Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimisation of deviation settlement charges using residential demand response under frequency-linked pricing environment

Nowadays, demand response (DR) is used to modify the real-time load curve either directly through incentive-based centralised control or indirectly through inducing a particular load pattern by time-varying pricing schemes. Various DR schemes are available which encourage the participation of industrial, commercial and residential consumers in system operation. This study investigates the potential of residential consumers’ DR participation in reducing Deviation Settlement Charge (DSC) under frequency-linked pricing environment. An incentive-based DR model for household devices by categorising them into shiftable and interruptible devices; including customer-side Battery Energy Storage System has been presented. A particular category of devices participates in a centrally initiated DR program depending upon the real-time grid frequency. The simulations are carried out on a realistic system of Indian distribution utility having a large percentage of residential consumers. It has been observed that the residential community DR participation reduces the DSCs substantially under real-time frequency conditions.

References

    1. 1)
      • 28. ‘Govt. of India, Ministry of Power’. Available at http://nrpc.gov.in, accessed September 2018.
    2. 2)
      • 2. Bhashan, B.: ‘A market design for developing countries commission’. CIGRE, Paris, France, 2006, (L).
    3. 3)
      • 10. Ali, M., Jokisalo, J., Siren, K., et al: ‘A user-centric demand response framework for residential heating, ventilation, and air-conditioning load management’, Electr. Power Compon. Syst., 2016, 44, (1), pp. 99109.
    4. 4)
      • 13. Bina, M.T., Ahmadi, D.: ‘Stochastic modeling for the next day domestic demand response applications’, IEEE Trans. Power Syst., 2015, 30, pp. 28802893.
    5. 5)
      • 29. ‘Chandigarh-the city beautiful’. Available at http://chandigarh.gov.in, accessed October 2018.
    6. 6)
      • 8. Paterakis, N.G., Erdinç, O., Bakirtzis, A.G., et al: ‘Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies’, IEEE Trans. Ind. Inf., 2015, 11, (6), pp. 15091519.
    7. 7)
      • 30. ‘24 × 7 Power for all, A Joint Initiative of Government of India and UT of Chandigarh’, 2017.
    8. 8)
      • 9. Cortés-Arcos, T., Bernal-Agustín, J.L., Dufo-López, R., et al: ‘Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology’, Energy, 2017, 138, pp. 1931.
    9. 9)
      • 17. Hourani, A.A., AlMuhaini, M.: ‘Impact of demand side management on the reliability performance of power distribution systems’. 2016 Saudi Arabia Smart Grid, Saudi Arabia, 2016, pp. 15.
    10. 10)
      • 26. Delhi, N.: ‘Report of the expert group volume – II review of the principles of deviation settlement mechanism (DSM), including linkage with frequency, In light of emerging markets New Delhi December 2017’, 2017.
    11. 11)
      • 14. Coletta, T., Delabays, R., Pagnier, L., et al: ‘Large electric load fluctuations in energy-efficient buildings and how to suppress them with demand side management’. IEEE PES Innovative Smart Grid Technologies Conf. Europe, Slovenia, 2017, pp. 16.
    12. 12)
      • 22. Rajakovic, N.L., Shiljkut, V.M.: ‘Long-term forecasting of annual peak load considering effects of demand-side programs’, J. Mod. Power Syst. Clean Energy, 2017, 6, pp. 145157.
    13. 13)
      • 15. Degefa, M.Z., Safdarian, A., Fotuhi-Firuzabad, M., et al: ‘Distribution network reliability improvements in presence of demand response’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 20272035.
    14. 14)
      • 25. Central Electricity Regulatory Commission New Delhi: ‘Notification Jan 2014’, 2016, (L), pp. 110.
    15. 15)
      • 23. Pujara, A., Vilas, V.G., Bakre, S.M., et al: ‘A novel approach for UI charge reduction using AMI based load prioritization in smart grid’, J. Electr. Syst. Inf. Technol., 2017, 4, (2), pp. 338346.
    16. 16)
      • 11. Logenthiran, T., Srinivasan, D., Shun, T.Z.: ‘Demand side management in smart grid using heuristic optimization’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12441252.
    17. 17)
      • 21. Nan, S., Zhou, M., Li, G.: ‘Optimal residential community demand response scheduling in smart grid’, Appl. Energy, 2018, 210, pp. 12801289.
    18. 18)
      • 7. Li, W., Logenthiran, T., Woo, W.L., et al: ‘Implementation of demand side management of a smart home using multi-agent system’. 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 2016, pp. 20282035.
    19. 19)
      • 5. Li, B., Shen, J., Wang, X., et al: ‘From controllable loads to generalized demand-side resources: a review on developments of demand-side resources’, Renew. Sustain. Energy Rev., 2016, 53, pp. 936944.
    20. 20)
      • 18. Wang, Z., Gu, C., Li, F., et al: ‘Active demand response using shared energy storage for household energy management’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 18881897.
    21. 21)
      • 12. Kinhekar, N., Padhy, N.P., Li, F., et al: ‘Utility oriented demand side management using smart AC and micro DC grid cooperative’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 11511160.
    22. 22)
      • 24. Pal Verma, Y., Kumar, A.: ‘Economic-emission unit commitment solution for wind integrated hybrid system’, Int. J. Energy Sect. Manage., 2011, 5, (2), pp. 287305.
    23. 23)
      • 4. Meyabadi, A.F., Deihimi, M.H.: ‘A review of demand-side management: reconsidering theoretical framework’, Renew. Sustain. Energy Rev., 2017, 80, (May), pp. 367379.
    24. 24)
      • 20. Xu, Q., Ding, Y., Yan, Q., et al: ‘Day-ahead load peak shedding/shifting scheme based on potential load values utilization: theory and practice of policy-driven demand response in China’, IEEE Access, 2017, 5, pp. 2289222901.
    25. 25)
      • 3. Thakur, T., Deshmukh, S.G., Kaushik, S.C., et al: ‘Impact assessment of the electricity act 2003 on the Indian power sector’, Energy Policy, 2005, 33, (9), pp. 11871198.
    26. 26)
      • 1. ‘All India installed capacity of power stations’. Available at http://www.cea.nic.in, accessed December 2018.
    27. 27)
      • 27. Dhundhara, S., Verma, Y.P., Williams, A.: ‘Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems’, Energy Convers. Manage., 2018, 177, (September), pp. 122142.
    28. 28)
      • 16. Vivekananthan, C., Mishra, Y., Ledwich, G., et al: ‘Demand response for residential appliances via customer reward scheme’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 809820.
    29. 29)
      • 19. Sharifi, R., Anvari-Moghaddam, A., Fathi, S.H., et al: ‘An economic demand response model in liberalized electricity markets with respect to flexibility of consumers’, IET Gener. Transm. Distrib., 2017, 11, pp. 42914298.
    30. 30)
      • 6. Mohsenzadeh, A., Pang, C.: ‘Two stage residential energy management under distribution locational marginal pricing’, Electr. Power Syst. Res., 2018, 154, pp. 361372.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.7116
Loading

Related content

content/journals/10.1049/iet-gtd.2018.7116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address