access icon free Optimal generation scheduling of fixed head hydrothermal system with demand-side management considering uncertainty and outage of renewable energy sources

Due to the rising infiltration of renewable energy sources, it is indispensable to investigate its brunt on the optimal power generation scheduling. However, the highly intermittent nature of renewable energy sources and their higher rate of outages may harm the entire grid. This work recommends fast convergence evolutionary programming (EP) with a time-varying mutation scale (FCEP_TVMS) for solving fixed head hydrothermal scheduling incorporating pumped-storage-hydraulic unit with demand-side management considering the uncertainty and outage of renewable energy sources. Simulation outcomes of the test system have been matched up to those acquired by fast convergence EP, colonial competitive differential evolution and heterogeneous strategy particle swarm optimisation. It is seen from the comparison that the recommended FCEP_TVMS technique can give a better-quality solution.

Inspec keywords: power generation dispatch; optimisation; power generation scheduling; power generation economics; hydrothermal power systems; evolutionary computation; genetic algorithms; pumped-storage power stations; particle swarm optimisation; renewable energy sources

Other keywords: uncertainty; renewable energy sources; fixed head hydrothermal scheduling incorporating pumped-storage-hydraulic unit; demand-side management; outage; fixed head hydrothermal system; optimal generation scheduling; optimal power generation scheduling

Subjects: Optimisation techniques; Optimisation techniques; Pumped storage stations and plants; Power system management, operation and economics

References

    1. 1)
      • 25. Li, W.: ‘Risk assessment of power systems: models, methods, and applications’ (John Wiley & Sons, Hoboken, NJ, USA, 2006).
    2. 2)
      • 2. Mondal, S., Bhattacharya, A., Nee Dey Halder, S.: ‘Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration’, Electr. Power Energy Syst., 2013, 44, (1), pp. 282292.
    3. 3)
      • 24. Reddy, S.S., Bijwe, P.R., Abhyankar, A.R.: ‘Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period’, IEEE Syst. J., 2015, 9, (4), pp. 14401451.
    4. 4)
      • 6. Fadil, S., Urazel, B.: ‘Solution to security constrained non-convex pumped-storage hydraulic unit scheduling problem by modified sub-gradient algorithm based on feasible values and pseudo water price’, Electr. Power Compon. Syst., 2013, 41, pp. 111135.
    5. 5)
      • 9. Mohan, M.R., Paranjothi, S.R., Prince Israel, S.: ‘Use of pumped hydro peak-load management plant in optimal scheduling of power systems’, Electr. Mach. Power Syst., 2007, 25, (10), pp. 10471061.
    6. 6)
      • 19. Basu, M.: ‘Fast convergence evolutionary programming for economic dispatch problems’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 40094017.
    7. 7)
      • 17. Narang, N., Dhillon, J.S., Kothari, D.P.: ‘Multi-objective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method’, Energy, 2012, 47, (1), pp. 237252.
    8. 8)
      • 22. Hetzer, J., Yu, D.C., Bhattarai, K.: ‘An economic dispatch model incorporating wind power’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 603611.
    9. 9)
      • 10. Ma, T., Yang, H., Lu, L., et al: ‘Pumped storage-based standalone photovoltaic power generation system: modeling and techno-economic optimization’, Appl. Energy, 2015, 137, (1), pp. 649659.
    10. 10)
      • 21. Seguro, J.V., Lambert, T.W.: ‘Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis’. J. Wind Eng. Ind. Aerodyn., 2000, 85, (1), pp. 7584.
    11. 11)
      • 20. Yao, X., Liu, Y., Lin, G.: ‘Evolutionary programming made faster’, IEEE Trans. Evol. Comput., 1999, 3, pp. 82102.
    12. 12)
      • 5. Perez-Diaz, J.I., Jim, J.: ‘Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration’, Energy, 2016, 109, (1), pp. 92104.
    13. 13)
      • 11. Yousefi, A., Ho-Ching, I.-H., Fernando, T., et al: ‘An approach for wind power integration using demand side resources, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 917924.
    14. 14)
      • 12. Zaghlool, M.F., Trutt, F.C.: ‘Efficient methods for optimal scheduling of fixed head hydrothermal power systems’, IEEE Trans. Power Syst., 1988, 3, (1), pp. 2430.
    15. 15)
      • 23. Ruey-Hsun, L., Jian-Hao, L.: ‘A fuzzy-optimization approach for generation scheduling with wind and solar energy systems’, IEEE Trans. PWRS, 2007, 22, (4), pp. 16651674.
    16. 16)
      • 3. Khan, N.A., Awan, A.B., Mahmood, A., et al: ‘A combined emission economic dispatch of power system including solar photovoltaic generation’, Energy Convers. Manage., 2015, 92, (1), pp. 8291.
    17. 17)
      • 18. Nguyen, T.T., Vo, D.N.: ‘Modified cuckoo search algorithm for multi-objective short-term hydrothermal scheduling’, Swarm. Evol. Comput., 2017, 37, pp. 7389.
    18. 18)
      • 14. Basu, M.: ‘Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems’, J. Electr. Power Syst. Res., 2003, 64, pp. 1115.
    19. 19)
      • 27. Ghasemi, M., Taghizadeh, M., Ghavidel, S., et al: ‘Colonial competitive differential evolution: an experimental study for optimal economic load dispatch’, Appl. Soft Comput., 2016, 40, pp. 342363.
    20. 20)
      • 4. Dubey, H.M, Pandit, M., Panigrahi, B.K.: ‘Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling’, Electr. Power Energy Syst., 2016, 83, (1), pp. 158174.
    21. 21)
      • 13. Rashid, A.H. A., Nor, K.M.: ‘An efficient method for optimal scheduling of fixed head hydro and thermal plants’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 632636.
    22. 22)
      • 1. Bakirtzis, A.G., Gavanidou, E.S.: ‘Optimum operation of a small autonomous system with unconventional energy sources’, Electr. Power Syst. Res., 1992, 23, (1), pp. 93102.
    23. 23)
      • 15. Basu, M.: ‘Artificial immune system for fixed head hydrothermal power system’, Energy, 2011, 36, (1), pp. 606612.
    24. 24)
      • 28. Du, W., Ying, W., Yan, G., et al: ‘Heterogeneous strategy particle swarm optimization’, IEEE Trans. Circuits Syst.- II: Express Briefs, 2017, 64, (4), pp. 467471.
    25. 25)
      • 8. Khandualo, S.K., Barisal, A.K., Hota, P.K.: ‘Scheduling of pumped storage hydrothermal system with evolutionary programming’, J. Clean Energy Technol., 2013, 1, (4), pp. 308312.
    26. 26)
      • 26. Mehdizadeh, A., Taghizadegan, N.: ‘Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management’, IET Renew. Power Gener., 2017, 11, (11), pp. 14461455.
    27. 27)
      • 7. Wood, A.J., Wollenberg, B.F.: ‘Power generation, operation and control’ (Wiley, New York, 1984, 2nd edn.), ch. 7, pp. 230239.
    28. 28)
      • 16. Nguyen, T.T., Vo, D.N., Truong, A.V.: ‘Cuckoo search algorithm for short-term hydrothermal scheduling’, Appl. Energy, 2014, 132, pp. 276287.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.7103
Loading

Related content

content/journals/10.1049/iet-gtd.2018.7103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading