access icon free Coordinated control strategy of multi-terminal VSC-HVDC system considering frequency stability and power sharing

Aiming at the power sharing among converter stations and the frequency stability of weak AC system connected by converter stations in multi-terminal voltage source converter high-voltage direct current (VSC-HVDC) system, a coordinated control strategy without communication is proposed, which can realise the bidirectional active power support between DC system and weak AC system. The strategy divides the voltage of DC system and the frequency of weak AC system into open-time operation area and time-limited operation area, respectively. When DC voltage and AC frequency are in the open-time operation area, respectively, unbalanced power in the system can be flexibly allocated according to the power margins of converter stations, which reduces DC voltage fluctuation and the influence of DC voltage errors (line length and other factors) among the converter stations on power regulation. When the AC frequency is in the time-limited operation area, the DC system can provide power support for the weak AC system to maintain frequency stability. When the DC voltage is in the time-limited operation area, the weak AC system loses part of the frequency quality to provide short-term power support for the DC system to maintain the stability of VSC-HVDC system as far as possible. The simulation results have verified the feasibility and effectiveness of the proposed control strategy.

Inspec keywords: HVDC power convertors; power transmission control; power grids; HVDC power transmission; power generation control; voltage control; power convertors

Other keywords: weak AC system; frequency stability; power sharing; AC frequency; DC system; coordinated control strategy; multiterminal voltage source converter high-voltage; converter stations; open-time operation area; multiterminal VSC-HVDC system; DC voltage fluctuation; bidirectional active power support; DC voltage errors; time-limited operation area

Subjects: Power system control; Voltage control; Power convertors and power supplies to apparatus; d.c. transmission; Control of electric power systems

References

    1. 1)
      • 4. Rouzbehi, K., Zhang, W., Candela, J.I., et al: ‘Unified reference controller for flexible primary control and inertia sharing in multi-terminal voltage source converter-HVDC grids’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 750758.
    2. 2)
      • 13. Salas Bayo, A., Beerten, J., Rimez, J., et al: ‘Analysis and control interactions in multi-infeed VSC-HVDC connections’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13361344.
    3. 3)
      • 22. Renedo, J., Cerrada, A.G., Rouco, L.: ‘Reactive power coordination in VSC-HVDC multi-terminal system for transient stability improvement’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 37583767.
    4. 4)
      • 2. Liu, Y., Chen, Z.: ‘A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in hybrid multi-infeed HVDC system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15681581.
    5. 5)
      • 30. Liu, Y., Wu, J., Liu, H., et al: ‘Effective power sharing based on adaptive droop control method in VSC multi-terminal DC grids’, Proc. CSEE., 2016, 36, (1), pp. 4048.
    6. 6)
      • 26. Liu, H., Chen, Z.: ‘Contribution of VSC-HVDC to frequency regulation of power system with offshore wind generation’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 918926.
    7. 7)
      • 20. Pipelzadeh, Y., Chaudhuri, N.R., Chaudhuri, B., et al: ‘System stability improvement through optimal control allocation in voltage source converter based high-voltage direct current links’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 811821.
    8. 8)
      • 24. Aouini, R., Marinescu, B., Kilani, K.B., et al: ‘Synchronverter based emulation and control of HVDC transmission’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 278286.
    9. 9)
      • 27. Silva, B., Moreira, C.L., Seca, L., et al: ‘Provision of inertial and primary frequency control services using offshore multi-terminal HVDC networks’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 800808.
    10. 10)
      • 7. Pipelzadeh, Y., Chaudhuri, N.R., Chaudhuri, B., et al: ‘Coordinated control of offshore wind farm and onshore HVDC converter for effective power oscillation damping’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 18601872.
    11. 11)
      • 25. Mitra, P., Zhang, L., Harnefors, L.: ‘Offshore wind integration to a weak grid by VSC-HVDC links using power-synchronization control: a case study’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 453461.
    12. 12)
      • 12. Zhang, C., Molinas, M., Rygg, A.: ‘Properties and physical interpretation of the dynamic interactions between voltage source converters and grid: electrical oscillation and its stability control’, IET Power Electron., 2017, 10, (8), pp. 894902.
    13. 13)
      • 10. Pradhan, J.K., Ghosh, A., Bhende, C.N.: ‘Small-signal modelling and multivariable PI control design of VSC-HVDC transmission link’, Electr. Power Syst. Res., 2017, 144, pp. 115126.
    14. 14)
      • 28. Shen, L., Barnes, M., Preece, R., et al: ‘The effect of VSC-HVDC control on AC system electromechanical oscillations and DC system dynamics’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 10851095.
    15. 15)
      • 17. Li, X., Guo, L., Hong, C., et al: ‘Hierarchical control of multiterminal DC grids for large-scale renewable energy integration’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 14481457.
    16. 16)
      • 23. Alawasa, K.M., Mohamed, Y.A.R.I.: ‘Impedance and damping characteristics of grid connected VSCs with power synchronization control strategy’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 952961.
    17. 17)
      • 19. Guan, M., Pan, W., Zhang, J., et al: ‘Synchronous generator emulation control strategy for voltage source converter (VSC) stations’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 30933101.
    18. 18)
      • 1. Liu, S., Xu, Z., Li, W., et al: ‘VSC-HVDC AC voltage-frequency coordination control strategy for improving AC system transient stability’, Proc. CSEE., 2015, 35, (19), pp. 48794887.
    19. 19)
      • 6. Eriksson, R.: ‘A new control structure for multi-terminal DC grids to damp inter-area oscillations’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 990998.
    20. 20)
      • 8. Cheah-Mane, M., Saiz, L., Liang, J., et al: ‘Criterion for the electrical resonance stability of offshore wind power plants connected through HVDC links’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 45794589.
    21. 21)
      • 21. Fuchs, A., Imhof, M., Demiray, T., et al: ‘Stabilization of large power system using VSC-HVDC and model predictive control’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 480488.
    22. 22)
      • 29. Andreasson, M., Wiget, R., Dimarogonas, D.V., et al: ‘Distributed frequency control through MTDC transmission system’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 250260.
    23. 23)
      • 9. Rao, H.: ‘Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control’, CSEE J. Power Energy Syst., 2015, 1, (1), pp. 918.
    24. 24)
      • 11. Cespedes, M., Sun, J.: ‘Impedance modeling and analysis of grid-connected voltage-source converters’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12541261.
    25. 25)
      • 16. Guan, M., Cheng, J., Wang, C., et al: ‘The frequency regulation scheme of interconnected grids with VSC-HVDC links’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 864872.
    26. 26)
      • 5. Zeni, L., Eriksson, R., Goumalatsos, S., et al: ‘Power oscillation damping from VSC-HVDC connected offshore wind power plants’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 829838.
    27. 27)
      • 3. Zhang, W., Rouzbehi, K., Luna, A., et al: ‘Multi-terminal HVDC grids with inertia mimicry capability’, IET Renew. Power Gener. Spec. Issue DC HVDC Syst. Technol., 2016, 10, (6), pp. 752760.
    28. 28)
      • 15. Kirakosyan, A., Shawky, M., Hosani, K., et al: ‘DC voltage regulation and frequency support in pilot voltage droop controlled multi terminal HVDC systems’, IEEE Trans. Power Deliv., 2017, 33, pp. 11531164, DOI: 10.1109/TPWRD.2017.2759302.
    29. 29)
      • 14. Zhu, J., Booth, C.D., Adam, G.P., et al: ‘Inertia emulation control strategy for VSC-HVDC transmission system’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 12771287.
    30. 30)
      • 18. Egea-Alvarez, A., Fekriasl, S., Hassan, F., et al: ‘Advanced vector control for voltage source converters connected to weak grids’, IEEE Trans. Power Syst., 2011, 30, (6), pp. 30723081.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.7102
Loading

Related content

content/journals/10.1049/iet-gtd.2018.7102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading