Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reliability evaluation method for AC/DC hybrid distribution power network considering cascaded multiport power electronic transformer

With the advantage of high-power supply capacity, low loss in power transmission and distribution process, strong power flow control ability, direct current (DC) distribution network has been one hotspot of the future distribution network. The cascaded multiport power electronic transformer (PET) has been proposed as key equipment for future distribution grid with multi-voltage level and alternating current (AC)/DC hybrid feature. Based on the typical topological structure and engineering reliability theory, a reliability evaluation model for PET considering the device redundancy is established. After that, the reliability evaluation method of the AC/DC hybrid distribution network with a cascaded multiport PET is proposed. Finally, case studies are provided in a ‘hand in hand’ AC/DC hybrid power distribution network structure. Case 1 analyses the PET reliability level under different design patterns and the redundancy level. Case 2 gives the reliability evaluation results of the AC/DC hybrid distribution network with PETs, which proves the correctness and validity of the proposed algorithm. Case 3 compares the reliability level of the AC and DC system under different scenarios and proposes the reliability promotion advice for the DC power distribution network.

References

    1. 1)
      • 23. Wang, J., Ding, M., Li, S.: ‘Reliability analysis of converter valves for VSC-HVDC power transmission system’. Asia-Pacific Power and Energy Engineering Conf., Chengdu, People's Republic of China, 2010, pp. 14.
    2. 2)
      • 20. Gu, C., Zheng, Z., Xu, L.: ‘Modeling and control of a multiport power electronic transformer (PET) for electric traction applications’, IEEE Trans. Power Electron., 2015, 31, (2), pp. 915927.
    3. 3)
      • 3. Ghadiri, A., Haghifam, M.R., Miri Larimi, S.M.: ‘Comprehensive approach for hybrid AC/DC distribution network planning using genetic algorithm’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 38923902.
    4. 4)
      • 22. Priya, M., Pathipooranam, P., Kola, M.: ‘Modular multilevel converter topologies and applications – a review’, IET Power Electron., 2018, 12, (2), pp. 170183.
    5. 5)
      • 8. Allan, R.N., Billinton, R., Sjarief, I.: ‘A reliability test system for educational purposes-basic distribution system data and results’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 813820.
    6. 6)
      • 11. Zou, K., Agalgaonkar, A.P., Muttaqi, K.M., et al: ‘An analytical approach for reliability evaluation of distribution systems containing dispatchable and nondispatchable renewable DG units’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 26572665.
    7. 7)
      • 5. Qi, C., Wang, K., Fu, Y.: ‘A decentralized optimal operation of AC/DC hybrid distribution grids’, IEEE Trans. Smart Grid, 2017, 9, (6), pp. 60956105.
    8. 8)
      • 25. Billinton, R., Ringlee, R., Allen, J.: ‘Power-system reliability calculations’ (MIT Press, Cambridge, MA, USA, 2003).
    9. 9)
      • 9. Billinton, R., Wang, P.: ‘Teaching distribution system reliability evaluation using Monte Carlo simulation’, IEEE Trans. Power Syst., 1999, 14, (2), pp. 397403.
    10. 10)
      • 21. Sun, G., Gou, R., Sun, W.: ‘Research on topology and control strategy of power electronic transformer based on MMC structure’, High Volt. Appar., 2016, 52, (1), pp. 142147.
    11. 11)
      • 13. Haipeng, X., Zhaohong, B., Yanling, L.: ‘A hybrid reliability evaluation method for meshed VSC-HVDC grids’, Energies, 2017, 10, (7), p. 895.
    12. 12)
      • 26. Wang, X., Jingli, G., Hui, P., et al: ‘Structural reliability analysis of modular multi-level converters’, Proc. CSEE, 2016, 36, (7), pp. 19081914.
    13. 13)
      • 17. Lee, C., Lee, B., Kim, G., et al: ‘Reliability assessment of possible AC/DC distribution system configurations’. Int. Conf. on Probabilistic Methods Applied to Power Systems, Durham, UK, 2014.
    14. 14)
      • 1. Baran, M.E., Mahajan, N.R: ‘DC distribution for industrial systems: opportunities and challenges’, IEEE Trans. Power Electron., 2003, 39, (6), pp. 15961601.
    15. 15)
      • 2. Werth, A., Kitamura, N., Tanaka, K.: ‘Conceptual study for open energy systems: distributed energy network using interconnected DC nanogrids’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 16211630.
    16. 16)
      • 27. Jain, S.P., Gopal, K.: ‘Recursive algorithm for reliability evaluation of k-out-of-n:G system’, IEEE Trans. Reliab., 1985, R-34, (2), pp. 144150.
    17. 17)
      • 4. Chaudhary, S.K., Guerrero, J.M., Teodorescu, R.: ‘Enhancing the capacity of the AC distribution system using DC interlinks—a step toward future DC grid’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 17221729.
    18. 18)
      • 7. Billinton, R., Billinton, J.E.: ‘Distribution system reliability indices’, IEEE Trans. Power Deliv., 1989, 4, (1), pp. 561568.
    19. 19)
      • 10. Heydt, G.T., Graf, T.J.: ‘Distribution system reliability evaluation using enhanced samples in a Monte Carlo approach’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 20062008.
    20. 20)
      • 12. Kazemi, S., Fotuhi-Firuzabad, M., Billinton, R.: ‘Reliability assessment of an automated distribution system’, IET Gener. Transm. Distrib., 2007, 1, (2), pp. 223233.
    21. 21)
      • 16. Shi, Q., Xu, X., Zhao, Y.: ‘Effects of power electronic devices on DC distribution reliability’, Power Syst. Technol., 2016, 40, (3), pp. 725732.
    22. 22)
      • 18. Chen, Q., Ji, Y., Pan, Y., et al: ‘Review of power electronic transformer topologies applied to distribution system’, Adv. Technol. Electr. Eng. Energy, 2015, 34, (3), pp. 4148.
    23. 23)
      • 24. Zhao, B., Song, Q., Li, J.: ‘Modular multilevel high-frequency-link DC transformer based on dual active phase-shift principle for Medium-voltage DC power distribution application’, IEEE Trans. Power Electron., 2016, 32, (3), pp. 17791791.
    24. 24)
      • 15. Sithimolada, V., Sauer, P.W.: ‘Facility-level DC vs. Typical ac distribution for data centers: a comparative reliability study’. Proc. TENCON 2010–2010 IEEE Region 10 Conf., Fukuoka, 2010, pp. 21022107.
    25. 25)
      • 19. Sabahi, M., Goharrizi, A.Y., Hosseini, S.H.: ‘Flexible power electronic transformer’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21592169.
    26. 26)
      • 14. Zeng, J., Xu, X., Zhao, Y.: ‘Reliability comparison of AC and DC distribution network’, Power Syst. Technol., 2014, 38, (9), pp. 25822589.
    27. 27)
      • 28. Shu-Zhen, Z., Jin-Xiang, Z., Zhen-Dong, L.: ‘Research on short-circuit test of 500 kV hybrid HVDC circuit breaker’. 2017 Int. Conf. on Smart Grid and Electrical Automation (ICSGEA), Changsha, People's Republic of China, 2017.
    28. 28)
      • 6. Alex, H., Mariesa, L.C., Gerald, T.H., et al: ‘The future renewable electric energy delivery and management system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.7035
Loading

Related content

content/journals/10.1049/iet-gtd.2018.7035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address