Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-status modelling and event simulation in smart distribution network based on finite state machine

This study investigates a multi-status simulation method based on event-driven for a smart distribution network (SDN). By switching a steady simulation model and a dynamic simulation model, the typical events of the SDN with various time constants can be simulated within the same simulation framework. The aim of the proposed method is to make full utilisation of the advantages of conventional simulation methods when considering the actual operation process of the SDN with many typical events so that the simulation results can approach the actual situation. To ensure that the operating status and corresponding simulation models of the SDN could be switched correctly and automatically, a simulation engine is proposed and implemented based on a finite state machine. Multi-status simulation experiments on IEEE 33-bus and an actual 10-kV distribution network validate the proposed multi-status simulation method.

References

    1. 1)
      • 25. Q/GDW 667-2011: ‘Operational control specification for distributed generation integrated distribution network’, 2011.
    2. 2)
      • 19. Han, Y., Shen, P., Zhao, X., et al: ‘Control strategies for islanded microgrid using enhanced hierarchical control structure with multiple current-loop damping schemes’, IEEE Trans. Smart Grid, 2016, 8, (3), pp. 11391153.
    3. 3)
      • 26. Gao, Y., Hu, X., Yang, W., et al: ‘Multi-objective bi-level coordinated planning of distributed generation and distribution network frame based on multi-scenario technique considering timing characteristics’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 14151429.
    4. 4)
      • 15. Schneider, K.P., Sortomme, E., Venkata, S.S., et al: ‘Evaluating the magnitude and duration of cold load pick-up on residential distribution feeders using multi-state load models’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 37653774.
    5. 5)
      • 4. Walling, R.A., Saint, R., Dugan, R.C., et al: ‘Summary of distributed resources impact on power delivery systems’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 16361644.
    6. 6)
      • 21. Salem, M.M., Elkalashy, N.I., Atia, Y., et al: ‘Modified inverter control of distributed generation for enhanced relaying coordination in distribution networks’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 7887.
    7. 7)
      • 20. Pinto, S.J., Panda, G., Peesapati, R.: ‘An implementation of hybrid control strategy for distributed generation system interface using Xilinx system generator’, IEEE Trans. Ind. Inf., 2017, 3, (5), pp. 27352745.
    8. 8)
      • 24. Hamed, N., Vahid, F., Hossein, A.A., et al: ‘Optimal daily scheduling of reconfiguration based on minimisation of the cost of energy losses and switching operations in microgrids’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 513522.
    9. 9)
      • 18. Dong, X., Wang, C., Liang, J.: ‘Calculation of power transfer limit considering electro-thermal coupling of overhead transmission line’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 15031511.
    10. 10)
      • 6. Ju, Y., Wu, W., Zhang, B., et al: ‘An extension of FBS three-phase power flow for handling PV nodes in active distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15471555.
    11. 11)
      • 29. IEEE Std 1547.2™: ‘IEEE standard for interconnecting distributed resources with electric power systems’, 2008.
    12. 12)
      • 22. Pola, G., Borri, A., Benedetto, M.D.D.: ‘Integrated design of symbolic controllers for nonlinear systems’, IEEE Trans. Autom. Control, 2012, 57, (2), pp. 534539.
    13. 13)
      • 5. Kadir, D., Bedri, K., Recep, Y.: ‘Maximum permissible integration capacity of renewable DG units based on system loads’, Energies, 2018, 11, (1), p. 255(116).
    14. 14)
      • 2. Santos-Martin, D., Lemon, S.: ‘Simplified modeling of low voltage distribution networks for PV voltage impact studies’, IEEE Trans. Smart Grid, 2017, 7, (4), pp. 19241931.
    15. 15)
      • 8. Liu, Y., Qu, Z., Xin, H., et al: ‘Distributed real-time optimal power flow control in smart grid’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 34033414.
    16. 16)
      • 13. Gao, H., Li, J., Xu, B.: ‘Principle and implementation of current differential protection in distribution networks with high penetration of DGs’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 565574.
    17. 17)
      • 9. Elmitwally, A., Elsaid, M., Elgamal, M.: ‘A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26122622.
    18. 18)
      • 28. Li, Z., Zang, C., Zeng, P., et al: ‘Agent-based distributed and economic automatic generation control for droop-controlled AC microgrids’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 36223630.
    19. 19)
      • 10. Haddadi, A., Yazdani, A., Joós, G.: ‘A gain-scheduled decoupling control strategy for enhanced transient performance and stability of an islanded active distribution network’, IEEE Trans. Power Deliv., 2014, 29, (2), pp. 560569.
    20. 20)
      • 27. Thomas, M., Branislav, H., Vassilios, G.A., et al: ‘Control strategies for microgrids with distributed energy storage systems: an overview’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 36523666.
    21. 21)
      • 3. Wheeler, K.A., Elsamahy, M., Faried, S.O.: ‘A novel reclosing scheme for mitigation of distributed generation effects on overcurrent protection’, IEEE Trans. Power Deliv., 2017, 33, (2), pp. 981991.
    22. 22)
      • 1. Sheng, W.X., Liu, K.Y., Cheng, S., et al: ‘A trust region SQP method for coordinated voltage control in smart distribution grid’, IEEE Trans. Smart Grid, 2015, 7, (1), pp. 381391.
    23. 23)
      • 11. Huang, W., Tai, N., Zheng, X.: ‘An impedance protection scheme for feeders of active distribution networks’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 15911602.
    24. 24)
      • 16. Dugan, R.C., Taylor, J.A., Montenegro, D.: ‘Energy storage modeling for distribution planning’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 954962.
    25. 25)
      • 17. Tang, X., Hasan, K.N., Milanovic, J.V., et al: ‘Estimation and validation of characteristic load profile through smart grid trials in a medium voltage distribution network’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 18481859.
    26. 26)
      • 12. Azzouz, M.A., Shaaban, M.F., El-Saadany, E.F.: ‘Real-time optimal voltage regulation for distribution networks incorporating high penetration of PEVs’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 32343245.
    27. 27)
      • 23. Lv, C., Sheng, W., Liu, K.Y., et al: ‘Multi-resolution modelling method based on time-status-machine in complex distribution network’, IET Cyber-Phys. Syst., Theor. Appl., 2017, 2, (4), pp. 172179.
    28. 28)
      • 14. Meng, C., Xiao, X.: ‘Secondary voltage control in islanded microgrids using event-triggered control’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 18721878.
    29. 29)
      • 7. Calderaro, V., Conio, G., Galdi, V., et al: ‘Optimal decentralized voltage control for distribution systems with inverter-based distributed generators’, IEEE Trans. Power Syst., 2013, 29, (1), pp. 230241.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.7034
Loading

Related content

content/journals/10.1049/iet-gtd.2018.7034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address