access icon free Second harmonic impedance drift-based islanding detection method

Islanding detection is an important operational aspect of microgrids. Early detection of islanding is essential to avoid unsynchronised reclosing. The possibility for minimal or near zero power mismatch between generation and load of a microgrid is high in a modern reconfigurable distribution network. Hence, at the instant of islanding, the voltage at the Point of Interconnection (PoI) will not change significantly and may lead to failure of over/under voltage and frequency relays in detecting islanding. In this work, second harmonic voltage at PoI of a voltage source inverter-based distributed generation (DG) is extracted through a sliding window discrete Fourier transform and is used for generating a second harmonic current reference, through virtual admittance. The second harmonic impedance at DG terminal is estimated. This second harmonic impedance remains insignificant in the case of grid-connected mode but drifts beyond a threshold in islanding mode. The proposed method is validated on two test cases, and the comparative results from simulation studies indicate that the islanding detection is achieved in less time with minimal effect on the power quality, fundamental voltage, and frequency at the PoI.

Inspec keywords: discrete Fourier transforms; power distribution faults; distributed power generation; power grids; voltage-source convertors; invertors

Other keywords: PoI; harmonic current reference; detecting islanding; near zero power mismatch; modern reconfigurable distribution network; harmonic voltage; unsynchronised reclosing; point of interconnection; voltage source inverter-based distributed generation; harmonic impedance drift-based islanding detection method; sliding window discrete Fourier transform; fundamental voltage; minimal power mismatch; islanding mode; microgrid

Subjects: DC-AC power convertors (invertors); Integral transforms; Power supply quality and harmonics; Distributed power generation

References

    1. 1)
      • 32. Kamyab, E., Sadeh, J.: ‘Islanding detection method for photovoltaic distributed generation based on voltage drifting’, IET Gener. Transm. Distrib., 2013, 7, (6), pp. 584592.
    2. 2)
      • 1. Coster, E., Myrzik, J., Kling, W.: ‘Effect of DG on distribution grid protection’, InTech, 2010, 10, pp. 12261229.
    3. 3)
      • 17. Kumar, D., Bhowmik, P.S.: ‘Artificial neural network and phasor data-based islanding detection in smart grid’, IET Gener. Transm. Distrib., 2018, 12, (21), pp. 58435850.
    4. 4)
      • 34. Liu, N., Diduch, C., Chang, L., et al: ‘A reference impedance-based passive islanding detection method for inverter-based distributed generation system’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (4), pp. 12051217.
    5. 5)
      • 2. IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std. 1547-2003, 2003, pp. 128.
    6. 6)
      • 44. Krause, P.C., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’, vol. 75 (John Wiley & Sons, NJ, USA, 2013).
    7. 7)
      • 10. Mahat, P., Chen, Z., Bak-Jensen, B.: ‘Review on islanding operation of distribution system with distributed generation’. IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 18.
    8. 8)
      • 24. Cai, W., Liu, B., Duan, S., et al: ‘An islanding detection method based on dual-frequency harmonic current injection under grid impedance unbalanced condition’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 11781187.
    9. 9)
      • 21. Vahedi, H., Karrari, M.: ‘Adaptive fuzzy sandia frequency-shift method for islanding protection of inverter-based distributed generation’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 8492.
    10. 10)
      • 18. Mishra, M., Rout, P.K: ‘Detection and classification of micro-grid faults based on HHT and machine learning techniques’, IET Gener. Transm. Distrib., 2017, 12, (2), pp. 388397.
    11. 11)
      • 27. Emadi, A., Afrakhte, H.: ‘A reference current perturbation method for islanding detection of a multi-inverter system’, Electr. Power Syst. Res., 2016, 132, pp. 4755.
    12. 12)
      • 28. Reigosa, D., Briz, F., Charro, C.B., et al: ‘Active islanding detection using high-frequency signal injection’, IEEE Trans. Ind. Appl., 2012, 48, (5), pp. 15881597.
    13. 13)
      • 41. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    14. 14)
      • 29. Jia, K., Wei, H., Bi, T., et al: ‘An islanding detection method for multi-DG systems based on high-frequency impedance estimation’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 7483.
    15. 15)
      • 35. Liu, N., Aljankawey, A., Diduch, C., et al: ‘Passive islanding detection approach based on tracking the frequency-dependent impedance change’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 25702580.
    16. 16)
      • 15. Nale, R., Venkatanagaraju, K., Biswal, S., et al: ‘Islanding detection in distributed generation system using intrinsic time decomposition’, IET Gener. Transm. Distrib., 2019, 13, (5), pp. 626633.
    17. 17)
      • 36. Mohamad, A.M.I., Mohamed, Y.A.I.: ‘Impedance-based analysis and stabilization of active DC distribution systems with positive feedback islanding detection schemes’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 99029922.
    18. 18)
      • 22. Zeineldin, H.H.: ‘A Qf droop curve for facilitating islanding detection of inverter-based distributed generation’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 665673.
    19. 19)
      • 30. Azim, R., Li, F., Xue, Y., et al: ‘An islanding detection methodology combining decision trees and sandia frequency shift for inverter-based distributed generations’, IET Gener. Transm. Distrib., 2017, 11, (16), pp. 41044113.
    20. 20)
      • 43. Clerc, M., Kennedy, J.: ‘The particle swarm – explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
    21. 21)
      • 33. Emadi, A., Afrakhte, H., Sadeh, J.: ‘Fast active islanding detection method based on second harmonic drifting for inverter-based distributed generation’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 34703480.
    22. 22)
      • 8. Najy, W.K., Zeineldin, H.H., Alaboudy, A.H., et al: ‘A Bayesian passive islanding detection method for inverter-based distributed generation using ESPRIT’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 26872696.
    23. 23)
      • 23. Zhu, Y., Xu, D., He, N., et al: ‘A novel RPV (reactive-power-variation) antiislanding method based on adapted reactive power perturbation’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 49985012.
    24. 24)
      • 20. Yafaoui, A., Wu, B., Kouro, S.: ‘Improved active frequency drift anti-islanding detection method for grid connected photovoltaic systems’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23672375.
    25. 25)
      • 3. Standard UL 1741, inverters, converters, and controllers for use in independent power systems’, Underwriters Laboratories Inc. US, 2001.
    26. 26)
      • 5. Xu, W., Zhang, G., Li, C., et al: ‘A power line signaling based technique for anti-islanding protection of distributed generators – part I: scheme and analysis’, IEEE Trans. Power Deliv., 2007, 22, (3), pp. 17581766.
    27. 27)
      • 38. Voglitsis, D., Papanikolaou, N.P., Kyritsis, A.C: ‘Active cross-correlation anti-islanding scheme for PV module-integrated converters in the prospect of high penetration levels and weak grid conditions’, IEEE Trans. Power Electron., 2018, 34, (3), pp. 22582274.
    28. 28)
      • 19. Nale, R., Biswal, M., Kishor, N.: ‘A transient component based approach for islanding detection in distributed generation’, IEEE Trans. Sustain. Energy, 2019, 10, (3), pp. 11291138o. doi: 10.1109/TSTE.2018.2861883.
    29. 29)
      • 13. Haider, R., Kim, C.H., Ghanbari, T., et al: ‘Harmonic-signature-based islanding detection in grid-connected distributed generation systems using Kalman filter’, IET Renew. Power Gener., 2018, 12, (15), pp. 18131822.
    30. 30)
      • 37. Muda, H., Jena, P.: ‘Rate of change of superimposed negative sequence impedance based islanding detection technique for distributed generations’, IET Gener. Transm. Distrib., 2016, 10, (13), pp. 31703182.
    31. 31)
      • 12. Hashemi, F., Mohammadi, M., Kargarian, A.: ‘Islanding detection method for microgrid based on extracted features from differential transient rate of change of frequency’, IET Gener. Transm. Distrib., 2017, 11, (4), pp. 891904.
    32. 32)
      • 25. Tedde, M., Smedley, K.: ‘Anti-islanding for three-phase one-cycle control grid tied inverter’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 33303345.
    33. 33)
      • 11. Khamis, A., Shareef, H., Bizkevelci, E., et al: ‘A review of islanding detection techniques for renewable distributed generation systems’, Renew. Sustain. Energy Rev., 2013, 28, pp. 483493.
    34. 34)
      • 16. Gupta, N., Garg, R.: ‘Algorithm for islanding detection in photovoltaic generator network connected to low-voltage grid’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 22802287.
    35. 35)
      • 14. Dubey, R., Popov, M., Samantaray, S.R.: ‘Transient monitoring function-based islanding detection in power distribution network’, IET Gener. Transm. Distrib., 2019, 13, (6), pp. 805813.
    36. 36)
      • 39. Liu, M., Zhao, W., Wang, Q., et al: ‘An irregular current injection islanding detection method based on an improved impedance measurement scheme’, Energies, 2018, 11, (9), pp. 24742492.
    37. 37)
      • 40. Das, D., Gurrala, G., Shenoy, U.J.: ‘Transition between grid-connected mode and islanded mode in VSI-fed microgrids’, Sādhanā, 2017, 42, (8), pp. 12391250.
    38. 38)
      • 7. Faqhruldin, O.N., El-Saadany, E.F., Zeineldin, H.H.: ‘A universal islanding detection technique for distributed generation using pattern recognition’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19851992.
    39. 39)
      • 31. Murugesan, S., Murali, V.: ‘Band pass filter and AFVmean-based unintentional islanding detection’, IET Gener. Transm. Distrib., 2019, 13, (19), pp. 14891498.
    40. 40)
      • 42. Jacobsen, E., Lyons, R.: ‘The sliding DFT’, IEEE Signal Process. Mag., 2003, 20, (2), pp. 7480.
    41. 41)
      • 9. El-Khattam, W., Yazdani, A., Sidhu, T.S., et al: ‘Investigation of the local passive anti-islanding scheme in a distribution system embedding a PMSG-based wind farm’, IEEE Trans. Power Deliv., 2011, 26, (1), pp. 4252.
    42. 42)
      • 4. Redfern, M.A., Usta, O., Fielding, G.: ‘Protection against loss of utility grid supply for a dispersed storage and generation unit’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 948954.
    43. 43)
      • 6. Jang, S.-I.I., Kim, K.-H.: ‘An islanding detection method for distributed generations using voltage unbalance and total harmonic distortion of current’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 745752.
    44. 44)
      • 26. Karimi, H., Yazdani, A., Iravani, R.: ‘Negative-sequence current injection for fast islanding detection of a distributed resource unit’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 298307.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6838
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6838
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading