access icon free Decentralised hierarchical coordination of electric vehicles in multi-microgrid systems

Here, the authors study the optimal coordination of electric vehicles (EVs) in a multi-microgrid (MMG) system with respect to a given time-of-use (TOU) price trajectory over a multi-time period. The authors firstly formulate a class of EV charging/discharging coordination problems for each individual microgrid (MG) to minimise the electricity cost of this MG, while the implemented strategy may result in high variations of the total demand and even build new peaky demands. To mitigate these negative effects, the authors build an aggregate optimisation problem with quadratic cost function under certain bounds on the electricity costs of each MG. The authors further propose a decentralised method for the underlying optimisation problem and verify the convergence of the system to the optimal strategy with a logarithmic convergence rate. Furthermore, the authors consider the power exchange capacity between the MMG system and the main grid, and present a decentralised algorithm to obtain an optimal strategy that minimises the system cost under this capacity constraint. Also, the convergence, the optimality, and the convergence rate of the proposed algorithm are shown.

Inspec keywords: distributed power generation; pricing; minimisation; electric vehicles

Other keywords: peaky demands; optimality; decentralised hierarchical coordination; electric vehicles; aggregate optimisation problem; optimal coordination; decentralised method; EVs; multimicrogrid system; electricity cost; optimisation problem; coordination problems; individual microgrid; multitime period; total demand; MMG system; time-of-use price trajectory; decentralised algorithm; logarithmic convergence rate; MG; quadratic cost function; system cost minimization

Subjects: Distributed power generation; Optimisation techniques; Transportation

References

    1. 1)
      • 15. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, (1), pp. 168183.
    2. 2)
      • 27. Atwa, Y.M., El Saadany, E.F.: ‘Optimal allocation of ESS in distribution systems with a high penetration of wind energy’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 18151822.
    3. 3)
      • 30. Ma, Z., Zou, S., Ran, L., et al: ‘Efficient decentralized coordination of large-scale plug-in electric vehicle charging’, Automatica, 2016, 69, pp. 3547.
    4. 4)
      • 18. Wang, D., Guan, X., Wu, J., et al: ‘Integrated energy exchange scheduling for multimicrogrid system with electric vehicles’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 17621774.
    5. 5)
      • 20. Hermans, R., Almassalkhi, M., Hiskens, I.A.: ‘Incentive-based coordinated charging control of plug-in electric vehicles at the distribution-transformer level’. American Control Conf. (ACC), Montreal, QC, Canada, 2012, pp. 264269.
    6. 6)
      • 6. Tsikalakis, A.G., Hatziargyriou, N.D.: ‘Centralized control for optimizing microgrids operation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 241248.
    7. 7)
      • 13. Gregoratti, D., Matamoros, J.: ‘Distributed energy trading: the multiple-microgrid case’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25512559.
    8. 8)
      • 9. Madureira, A., Pereira, J., Gil, N., et al: ‘Advanced control and management functionalities for multi-microgrids’, Eur. Trans. Electr. Power, 2011, 21, (2), pp. 11591177.
    9. 9)
      • 1. Wu, C., Mohsenian Rad, H., Huang, J.: ‘Vehicle-to-aggregator interaction game’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 434442.
    10. 10)
      • 7. Khodaei, A.: ‘Provisional microgrids’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11071115.
    11. 11)
      • 2. Ma, Z., Callaway, D., Hiskens, I.: ‘Decentralized charging control of large populations of plug-in electric vehicles’, IEEE Trans. Control Syst. Technol., 2013, 21, (1), pp. 6778.
    12. 12)
      • 5. Wei, D., Zhang, C., Bo, S., et al: ‘A time-of-use price based multi-objective optimal dispatching for charging and discharging of electric vehicles’, Power Syst. Technol., 2014, 38, (11), pp. 29722977.
    13. 13)
      • 19. Jiang, R., Qiu, X., Li, D.: ‘Multi-agent system based dynamic game model of smart distribution network containing multi-microgrid’, Power Syst. Technol., 2014, 38, (12), pp. 33213327.
    14. 14)
      • 26. Cao, S., Tang, C., Li, P., et al: ‘An optimized EV charging model considering TOU price and SOC curve’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 388393.
    15. 15)
      • 24. Bai, X., Qiao, W.: ‘Robust optimization for bidirectional dispatch coordination of large-scale V2G’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19441954.
    16. 16)
      • 23. Zou, S., Ma, Z., Liu, X., et al: ‘An efficient game for coordinating electric vehicle charging’, IEEE Trans. Autom. Control, 2017, 62, (5), pp. 23742389.
    17. 17)
      • 14. Xu, D., Zhou, B., Chan, K.W., et al: ‘Distributed multi-energy coordination of multimicrogrids with biogas-solar-wind renewables’, IEEE Trans. Ind. Inf., 2018, PP, pp. 111.
    18. 18)
      • 21. de Hoog, J., Alpcan, T., Brazil, M., et al: ‘Optimal charging of electric vehicles taking distribution network constraints into account’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 365375.
    19. 19)
      • 16. Igualada, L., Corchero, C., Cruz Zambrano, M., et al: ‘Optimal energy management for a residential microgrid including a vehicle-to-grid system’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 21632172.
    20. 20)
      • 3. Yang, P., Tang, G., Nehorai, A.: ‘Optimal time-of-use electricity pricing using game theory’. Int. Conf. on Acoustics, Speech, and Signal Processing, Kyoto, Japan, 2012, pp. 30813084.
    21. 21)
      • 8. Lopes, J.A.P., Madureira, A.G., Gil, N., et al: ‘Operation of multi-microgrids’, in: Hatziargyriou, N. (Ed.): ‘Microgrids: architectures and control’ (Wiley-IEEE Press, Chichester, UK, 2014), pp. 165205.
    22. 22)
      • 11. Zhao, B., Wang, X., Lin, D., et al: ‘Energy management of multiple microgrids based on a system of systems architecture’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 64106421.
    23. 23)
      • 29. Ghavami, A., Kar, K., Gupta, A.: ‘Decentralized charging of plug-in electric vehicles with distribution feeder overload control’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 35273532.
    24. 24)
      • 4. Yang, L., Dong, C., Wan, C.L.J., et al: ‘Electricity time-of-use tariff with consumer behavior consideration’, Int. J. Prod. Econ., 2013, 146, (2), pp. 402410.
    25. 25)
      • 28. Safdarian, A., Fotuhi Firuzabad, M., Lehtonen, M.: ‘Optimal residential load management in smart grids: a decentralized framework’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 18361845.
    26. 26)
      • 12. Kargarian, A., Rahmani, M.: ‘Multi-microgrid energy systems operation incorporating distribution-interline power flow controller’, Electr. Power Syst. Res., 2015, 129, pp. 208216.
    27. 27)
      • 17. Rahbar, K., Xu, J., Zhang, R.: ‘Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 124134.
    28. 28)
      • 25. Deliami, S., Masoum, A.S., Moses, P.S., et al: ‘Real time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 456467.
    29. 29)
      • 31. Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific, Belmont, MA, USA, 1999, 2nd edn.).
    30. 30)
      • 22. Ma, Z., Zou, S., Liu, X.: ‘A distributed charging coordination for large-scale plug-in electric vehicles considering battery degradation cost’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 20442052.
    31. 31)
      • 10. Wu, J., Guan, X.: ‘Coordinated multi-microgrids optimal control algorithm for smart distribution management system’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 21742181.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6767
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6767
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading