Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Analysis of the stability and dynamic responses of converter-based generation in case of system splits

Here, a methodical research on the stability and response of a converter-based generation model is conducted, focusing on the accompanying effects of a system split scenario in the (European) electricity transmission network. The purpose of this research is to analyse the behaviour of a generic but detailed model in case of extreme contingencies. In particular the focus is set on reduced short-circuit power, high rates of change of frequency, and sudden voltage phase jumps at the point of common coupling (PCC). These effects are analysed by means of electromagnetic transient (EMT) simulations. In addition, the stability of the converter control is evaluated qualitatively. For the investigations carried out here, a single reduced wind turbine model with full-size converter is used focusing on the interactions with the accompanying phenomena of a system split. The results show that reduced short-circuit power as well as a large and sudden voltage phase jumps can be potential reasons for the converter system to disconnect from the grid.

References

    1. 1)
      • 1. O'Sullivan, J., Rogers, A., et al: ‘Studying the maximum instantaneous non-synchronous generation in an island system—frequency stability challenges in Ireland’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 29432951.
    2. 2)
      • 20. Messo, T., Sihvo, J., Yang, D., et al: ‘Improved delayed signal cancellation-based SRF-PLL for unbalanced grid’. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 31033110.
    3. 3)
      • 15. Morren, J., de Haan, S., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    4. 4)
      • 4. Ding, T., Sun, K., Huang, C., et al: ‘Mixed-integer linear programming-based splitting strategies for power system islanding operation considering network connectivity’, IEEE Syst. J., 2018, 12, (1), pp. 350359.
    5. 5)
      • 8. Zhou, P., Yuan, X., Hu, J., et al: ‘Stability of DC-link voltage as affected by phase locked loop in VSC when attached to weak grid’. 2014 IEEE PES General Meeting|Conf. & Exposition, National Harbor, MD, USA, 2014, pp. 15.
    6. 6)
      • 10. Dong, D., Wen, B., Boroyevich, D., et al: ‘Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 310321.
    7. 7)
      • 11. Suul, J.A., D'Arco, S., Rodríguez, P., et al: ‘Impedance-compensated grid synchronisation for extending the stability range of weak grids with voltage source converters’, IET Gener. Transm. Distrib., 2016, 10, (6), pp. 13151326.
    8. 8)
      • 30. Gole, A.M., Zhou, J.Z.: ‘VSC transmission limitations imposed by AC system strength and AC impedance characteristics’. 10th IET Int. Conf. on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 2012, p. 06.
    9. 9)
      • 17. Arani, M.F.M., Mohamed, Y.A.-R.I.: ‘Voltage source converter connected to very weak grids under disturbances’. 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Washington, DC, USA, 2017, pp. 15.
    10. 10)
      • 2. Lehner, J., Hennig, T., Weidner, J., et al: ‘Approach to design and review the system defence plan for over-frequency to ensure frequency stability in the ENTSO-E continental Europe synchronous area’. 17th Int. Wind Integration Workshop, Dublin, Ireland, 2018.
    11. 11)
      • 14. Erlich, I., Wilch, M.: ‘Primary frequency control by wind turbines’. IEEE PES General Meeting, Providence, RI, USA, 2010, pp. 18.
    12. 12)
      • 7. Egea-Alvarez, A., Fekriasl, S., Hassan, F., et al: ‘Advanced vector control for voltage source converters connected to weak grids’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 30723081.
    13. 13)
      • 21. Ghartemani, M.K., Khajehoddin, S.A., Jain, P.K., et al: ‘Problems of startup and phase jumps in PLL systems’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 18301838.
    14. 14)
      • 3. Union for the Co-ordination of the Transmission System of Electricity: ‘Final report – system disturbance on 4 November 2006’. 2007, Available at: www.entsoe.eu.
    15. 15)
      • 29. EirGrid and SONI: ‘Rocof modification proposal – TSO's recommendations’. Available at: http://www.soni.ltd.uk/media/documents/Archive/RoCoF, accessed September 2018, Belfast, United Kingdom.
    16. 16)
      • 9. Huang, Y., Yuan, X., Hu, J., et al: ‘Modeling of VSC connected to weak grid for stability analysis of DC-link voltage control’, IEEE J. Emerging Sel. Topics Power Electron., 2015, 3, (4), pp. 11931204.
    17. 17)
      • 19. Zheng, L., Geng, H., Yang, G.: ‘Fast and robust phase estimation algorithm for heavily distorted grid conditions’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 68456855.
    18. 18)
      • 16. Massmann, J., Roehder, A., Fuchs, B., et al: ‘Stability enhancement by VSC-HVDC with a supplementary frequency control strategy in case of system splits’. 2016 Electric Power Quality and Supply Reliability (PQ), Tallinn, Estonia, 2016, pp. 151156.
    19. 19)
      • 28. Chaudhuri, N.R., Yazdani, A., Chaudhuri, B., et al: ‘Multi-terminal direct-current grids: modeling, analysis, and control’ (John Wiley & Sons, NJ, USA, 2014), ISBN:978-1-118-72910-6.
    20. 20)
      • 24. Vennemann, K., Hennig, T., Winter, W., et al: ‘Systemic issues of converter-based generation and transmission equipment in power systems’. 17th Int. Wind Integration Workshop, Dublin, Ireland, 2018.
    21. 21)
      • 26. Neumann, T., Wijnhoven, T., Deconinck, G., et al: ‘Enhanced dynamic voltage control of type 4 wind turbines during unbalanced grid faults’, IEEE Trans. Energy Convers., 2015, 30, (4), pp. 16501659.
    22. 22)
      • 25. Ndreko, M., Rüberg, S., Winter, W.: ‘Grid forming control for stable power systems with up to 100% inverter based generation: a paradigm scenario using the IEEE 118-Bus system’. 17th Int. Wind Integration Workshop, Dublin, Ireland, 2018.
    23. 23)
      • 18. Freijedo, F.D., Doval-Gandoy, J., Lopez, O., et al: ‘Tuning of phase-locked loops for power converters under distorted utility conditions’, IEEE Trans. Ind. Appl., 2009, 45, (6), pp. 20392047.
    24. 24)
      • 23. Mohseni, M., Islam, S.M., Masoum, M.A.S.: ‘Impacts of symmetrical and asymmetrical voltage sags on DFIG-based wind turbines considering phase-angle jump, voltage recovery, and Sag parameters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15871598.
    25. 25)
      • 22. Giampaolo, B., Barater, D., Tarisciotti, L., et al: ‘High-dynamic single-phase Hilbert-based PLL for improved phase-jump ride-through in grid-connected inverters’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014, pp. 49324939.
    26. 26)
      • 13. Hughes, F.M., Anaya-Lara, O., Jenkins, N., et al: ‘Control of DFIG-based wind generation for power network support’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 19581966.
    27. 27)
      • 27. He, W., Yuan, X., Hu, J.: ‘Inertia provision and estimation of PLL-based DFIG wind turbines’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 510521.
    28. 28)
      • 5. Strachan, N.P.W., Jovcic, D.: ‘Stability of a variable-speed permanent magnet wind generator with weak AC grids’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 27792788.
    29. 29)
      • 12. Cai, L.-J., Erlich, I.: ‘Doubly fed induction generator controller design for the stable operation in weak grids’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 10781084.
    30. 30)
      • 6. Wu, G., Liang, J., Zhou, X., et al: ‘Analysis and design of vector control for VSC-HVDC connected to weak grids’, CSEE J. Power Energy Syst., 2017, 3, (2), pp. 115124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6763
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6763
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address