Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Distributed optimisation-based collaborative security-constrained transmission expansion planning for multi-regional systems

This study presents a distributed collaborative transmission expansion planning (TEP) algorithm for interconnected multi-regional power systems. The proposed algorithm is a multi-agent-based TEP. A local TEP is formulated for each region (agent) with respect to the region's local characteristic and interactions (i.e. tie-line flows) with its neighbours. Nodal power balances at border buses are modified to model the interactions. Realistic planning constraints and objectives such as budget constraints, operational costs, N − 1 security criterion, and uncertainties are modelled in the local TEPs. The information privacy is respected as each local planner needs to share limited information related to cross-border tie lines with other planners. To coordinate the local planners, a two-level distributed optimisation algorithm is proposed based on the concept of analytical target cascading (ATC) for multidisciplinary design optimisation. While the upper level solves the local TEPs in parallel, the lower level seeks to coordinate neighbouring regions. The lower-level problem is further replaced in the upper-level optimisation by Karush–Kuhn–Tucker conditions to relax the need for any form of central coordinator. This makes the proposed ATC-based TEP a fully parallelised distributed optimisation algorithm. An initialisation strategy is suggested to enhance the performance of the distributed TEP.

References

    1. 1)
      • 5. Romero, R., Monticelli, A., Garcia, A., et al: ‘Test systems and mathematical models for transmission network expansion planning’, IEE Proc., Gener. Transm. Distrib., 2002, 149, (1), pp. 2736.
    2. 2)
      • 24. Zhang, H.: ‘Transmission expansion planning for large power systems’ (Arizona State University, 2013).
    3. 3)
      • 13. Buijs, P., Belmans, R.: ‘Transmission investments in a multilateral context’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 475483.
    4. 4)
      • 14. Mohammadi, A., Mehrtash, M., Kargarian, A.: ‘Diagonal quadratic approximation for decentralized collaborative TSO + DSO optimal power flow’, IEEE Trans. Smart Grid, 2018, 10, (3), pp. 23582370.
    5. 5)
      • 21. DorMohammadi, S., Rais-Rohani, M.: ‘Exponential penalty function formulation for multilevel optimization using the analytical target cascading framework’, Struct. Multidiscip. Optim., 2013, 47, (4), pp. 599612.
    6. 6)
      • 17. NERC. Transmission System Adequacy and Security. Available at http://www.nerc.com accessed 15 November 2017.
    7. 7)
      • 19. Michelena, N., Park, H., Papalambros, P.Y.: ‘Convergence properties of analytical target cascading’, AIAA J., 2003, 41, (5), pp. 897905.
    8. 8)
      • 9. Khodaei, A., Shahidehpour, M., Wu, L., et al: ‘Coordination of short-term operation constraints in multi-area expansion planning’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22422250.
    9. 9)
      • 25. Rosenthal, E.: ‘GAMS – a user's guide’, in Gardner, Guy (Eds.): ‘GAMS development corporation’ (Citeseer, Princeton, NJ, USA, 2008),pp. 1293.
    10. 10)
      • 15. Kargarian, A., Fu, Y., Li, Z.: ‘Distributed security-constrained unit commitment for large-scale power systems’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19251936.
    11. 11)
      • 26. Ruiz, C., Conejo, A.J.: ‘Robust transmission expansion planning’, Eur. J. Oper. Res., 2015, 242, (2), pp. 390401.
    12. 12)
      • 4. PLEXOS ‘Integrated Energy Model’. Available at https://energyexemplar.com accessed 7 June 2017.
    13. 13)
      • 27. Orfanos, G.A., Georgilakis, P.S., Hatziargyriou, N.D.: ‘Transmission expansion planning of systems with increasing wind power integration’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13551362.
    14. 14)
      • 30. Zhao, C., Guan, Y.: ‘Data-driven risk-averse two-stage stochastic program with Z-structure probability metrics’, Optimization Online, 2015.
    15. 15)
      • 6. Arabali, A., Ghofrani, M., Etezadi-Amoli, M., et al: ‘A multi-objective transmission expansion planning framework in deregulated power systems with wind generation’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30033011.
    16. 16)
      • 1. Conejo, A.J., Baringo, L., Kazempour, S.J., et al: ‘Investment in electricity generation and transmission’ (Springer International Publishing, Cham, Zug, Switzerland, 2016).
    17. 17)
      • 11. Tohidi, Y., Hesamzadeh, M.R.: ‘Multi-regional transmission planning as a non-cooperative decision-making’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 26622671.
    18. 18)
      • 2. Oh, H.: ‘A new network reduction methodology for power system planning studies’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 677684.
    19. 19)
      • 12. Tohidi, Y., Hesamzadeh, M.R., Regairaz, F.: ‘Modified benders decomposition for solving transmission investment game with risk measure’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 19361947.
    20. 20)
      • 29. Mehrtash, M., Raoofat, M., Mohammadi, M., et al: ‘Fast stochastic security-constrained unit commitment using point estimation method’, Int. Trans. Electr. Energy Syst., 2016, 26, (3), pp. 671688.
    21. 21)
      • 22. Erseghe, T.: ‘Distributed optimal power flow using ADMM’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23702380.
    22. 22)
      • 18. Bagheri, A., Wang, J., Zhao, C.: ‘Data-driven stochastic transmission expansion planning’, IEEE Trans. Power Syst., 2016, 32, (5), pp. 34613470.
    23. 23)
      • 16. Majidi-Qadikolai, M., Baldick, R.: ‘Integration of N − 1 contingency analysis with systematic transmission capacity expansion planning: ERCOT case study’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 22342245.
    24. 24)
      • 8. Gharibpour, H., Aminifar, F., Bashi, M.H.J.I.G.: ‘Short-circuit-constrained transmission expansion planning with bus splitting flexibility’, Transm. Distrib., 2017, 12, (1), pp. 217226.
    25. 25)
      • 28. IEEE 118-bus, 54-unit, 24 h system. Available at http://motor.ece.iit.edu/data/JEAS_IEEE118.doc accessed 7 June 2017.
    26. 26)
      • 20. Kim, H.M., Michelena, N.F., Papalambros, P.Y., et al: ‘Target cascading in optimal system design’, J. Mech. Des., 2003, 125, (3), pp. 474480.
    27. 27)
      • 7. Rahmani, M., Romero, R., Rider, M.J.: ‘Strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21642173.
    28. 28)
      • 10. Kargarian, A., Fu, Y.: ‘System of systems based security-constrained unit commitment incorporating active distribution grids’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 24892498.
    29. 29)
      • 3. Khayatian, A., Barati, M., Lim, G.: ‘Integrated microgrid expansion planning in electricity market with uncertainty’, IEEE Trans. Power Syst., 2017, 33, (4), pp. 36343643.
    30. 30)
      • 23. Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific Belmont, Tempe, AZ, USA, 1999).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6555
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address