access icon free Real-time agent-based control of plug-in electric vehicles for voltage and thermal management of LV networks: formulation and HIL validation

Ensuring a stable and reliable operation of current and future distribution networks represents a major challenge for system operators aggravated by the global proliferation of plug-in electric vehicles (PEVs). While the introduction of a controlled charging process would be advantageous to minimise the impacts PEVs cause in the system, a suitable, efficient and ready to be implemented solution is still missing. The present work addresses this issue by proposing a smart charging management solution capable to simultaneously combat the main network impacts derived from the energy needs of the vehicles. This is done by means of an agent-based hierarchical real-time algorithm which combines a local decentralised nodal voltage management with a centralised thermal control conceived to minimise the impact upon participating users. The effectiveness of the proposed system is tested both using a simulation environment considering multiple PEV penetration levels and employing commercially available charging stations and cars through hardware-in-the-loop simulations. The results reveal how all network violations are successfully attenuated by peak shaving the total aggregated charging demand and ensuring a correct system operation for all penetration scenarios while inflicting no impact on the participating users.

Inspec keywords: distribution networks; distributed power generation; hardware-in-the loop simulation; electric vehicles; real-time systems; temperature control

Other keywords: local decentralised nodal voltage management; smart charging management; plug-in electric vehicles; hardware-in-the-loop simulations; global proliferation; multiple PEV penetration levels; centralised thermal control; aggregated charging demand; controlled charging process; thermal management; LV networks; charging stations; real-time agent-based control; real-time algorithm; distribution networks

Subjects: Transportation; Thermal variables control; Distributed power generation; Power system control; Control of electric power systems; Distribution networks

References

    1. 1)
      • 13. Haque, A.N.M.M., Nguyen, P.H., Vo, T.H., et al: ‘Agent-based unified approach for thermal and voltage constraint management in LV distribution network’, Electr. Power Syst. Res., 2017, 143, pp. 462473.
    2. 2)
      • 22. Genovese, A., Ortenzi, F., Villante, C.: ‘On the energy efficiency of quick DC vehicle battery charging’, World Electr. Veh. J., 2015, 7, (4), pp. 570576.
    3. 3)
      • 7. Pillai, J.R., Thøgersen, P., Møller, J., et al: ‘Integration of electric vehicles in low voltage danish distribution grids’. 2012 IEEE Power and Energy Society General Meeting (PESGM), San Diego, CA, USA., 2012, pp. 18.
    4. 4)
      • 15. Bundesministerium der Justiz und für Verbraucherschutz. ‘Gesetz über die Elektrizitäts - und Gasversorgung (Energiewirtschaftsgesetz - EnWG) § 14a Steuerbare Verbrauchseinrichtungen in Niederspannung; Verordnungsermächtigung’. Available at https://www.gesetze-im-internet.de/enwg_2005/__14a.html, accessed May 2017.
    5. 5)
      • 14. International Standard IEC 61851-1: ‘Electric vehicle conductive charging system - Part 1: General requirements’, 2017.
    6. 6)
      • 23. Wu, Q., Nielsen, A.H., Østergaard, J., et al: ‘Driving pattern analysis for electric vehicle (EV) grid integration study’. 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenburg, Sweden, 2010, pp. 16.
    7. 7)
      • 10. Martinenas, S., Knezović, K., Marinelli, M.: ‘Management of power quality issues in low voltage networks using electric vehicles: experimental validation’, IEEE Trans. Power Deliv., 2016, 32, (2), pp. 971979.
    8. 8)
      • 11. Knezović, K., Martinenas, S., Andersen, P.B., et al: ‘Enhancing the role of electric vehicles in the power grid: field validation of multiple ancillary services’, IEEE Trans. Transp. Electrification, 2017, 3, (1), pp. 201209.
    9. 9)
      • 8. Clement-Nyns, K., Haesen, E., Driesen, J.: ‘The impact of charging plug in hybrid electric vehicles on a residential distribution grid’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 371380.
    10. 10)
      • 5. Haque, A.N.M.M., Rahman, M.T., Nguyen, P.H., et al: ‘Smart curtailment for congestion management in LV distribution network’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 2016, pp. 15.
    11. 11)
      • 18. Richardson, I., Thomson, M.: ‘Integrated simulation of photovoltaic micro-generation and domestic electricity demand: a one-minute resolution open-source model’, Proc. Inst. Mech. Eng. Part A, J. Power Energy, 2012, 227, (1), pp. 7381.
    12. 12)
      • 12. Rauma, K.: ‘Industrial aspects of voltage management and hosting capacity of photovoltaic power generation in low voltage networks’. PhD thesis, Université Grenoble Alpes, 2016.
    13. 13)
      • 6. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: ‘Integration of electric vehicles in the electric power system’, Proc. IEEE, 2011, 99, (1), pp. 168183.
    14. 14)
      • 24. Alonso, M., Amaris, H., Germain, J.G., et al: ‘Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms’, Energies, 2014, 7, (4), pp. 24492475.
    15. 15)
      • 17. The MathWorks Inc.: ‘Simscape Power Systems’. Available at https://www.mathworks.com/products/simpower.html.html, accessed May 2017.
    16. 16)
      • 19. Jenkins, D.P., Patidar, S., Simpson, S.A.: ‘Synthesising electrical demand profiles for UK dwellings’, Energy Build., 2014, 76, pp. 605614.
    17. 17)
      • 16. UNE-EN 50160: ‘Voltage characteristics of electricity supplied by public electricity networks’, 2011.
    18. 18)
      • 20. Habib, S., Kamran, M., Rashid, U.: ‘Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks - A review’, J. Power Sources, 2015, 277, pp. 205214.
    19. 19)
      • 1. IEA: ‘Global EV outlook 2018: towards cross-modal electrification’ (International Energy Agency, Paris, France, 2018), pp. 1141.
    20. 20)
      • 21. Fernández Orjuela, J.A.: ‘Intégration des Véhicules Electriques dans le réseau électrique résidentiel: impact sur le déséquilibre et stratégies V2G innovantes’. PhD thesis, Université Grenoble Alpes, 2014.
    21. 21)
      • 2. Richardson, D.B.: ‘Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration’, Renew. Sustain. Energy Rev., 2013, 19, pp. 247254.
    22. 22)
      • 4. García-Villalobos, J., Zamora, I., San Martín, J.I., et al: ‘Plug-in electric vehicles in electric distribution networks: a review of smart charging approaches’, Renew. Sustain. Energy Rev., 2014, 38, pp. 717731.
    23. 23)
      • 25. García Veloso, C.: ‘Real Time Voltage and Thermal Management of Low Voltage Distribution Networks through Plug-in Electric Vehicles’. MSc thesis, Barcelona Shcool of Industrial Engineering, 2017.
    24. 24)
      • 3. Verzijlbergh, R.A., De Vries, L.J., Lukszo, Z.: ‘Renewable energy sources and responsive demand. Do we need congestion management in the distribution grid?’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21192128.
    25. 25)
      • 9. Quirós-Tortós, J., Ochoa, L.F., Alnaser, S.W., et al: ‘Control of EV charging points for thermal and voltage management of LV networks’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 30283039.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6547
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6547
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading