access icon free Probabilistic load flow with correlated wind power sources using a frequency and duration method

Probabilistic load flow (PLF) is an important tool in power system planning and operation. One limitation of conventional PLF is that only the probability information of random variables is obtained as a reference for related analyses. Frequency and duration information often plays an important role in power system assessment. In this study, a frequency and duration method for PLF with correlated wind power sources and loads is proposed based on Latin hypercube sampling (LHS), Nataf transformation, and Markov chains. In the proposed method, the spatial and temporal correlations among wind power sources and loads are addressed using Nataf transformation and Markov chains, which are incorporated into the LHS framework to solve the PLF problem with frequency and duration quantities. With the proposed method, not only the probability information but also the frequency and duration information of the random output variables in a PLF problem can be efficiently and accurately obtained. The performance of the proposed PLF method is verified using comparative tests on three modified test systems.

Inspec keywords: probability; statistical distributions; Monte Carlo methods; wind power plants; sampling methods; load flow; Markov processes

Other keywords: duration information; temporal correlations; Nataf transformation; conventional PLF; PLF problem; duration method; PLF method; power system assessment; probabilistic load flow; power system planning; duration quantities; random output variables; spatial correlations; correlated wind power sources; probability information; Markov chains

Subjects: Other topics in statistics; Monte Carlo methods; Wind power plants

References

    1. 1)
      • 29. Qin, Z., Li, W., Xiong, X.: ‘Estimating wind speed probability distribution using kernel density method’, Electr. Power Syst. Res., 2011, 81, (12), pp. 21392146.
    2. 2)
      • 9. Su, C.L.: ‘Probabilistic load-flow computation using point estimate method’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18431851.
    3. 3)
      • 28. Billinton, R., Allan, R.: ‘Reliability evaluation of power systems’ (Plenum, New York, NY, USA, 1996, 2nd edn.).
    4. 4)
      • 33. Tamtum, A., Schellenberg, A., Rosehart, W.D.: ‘Enhancements to the cumulant method for probabilistic optimal power flow studies’, IEEE Trans. Power Syst., 2009, 24, (4), pp. 17391746.
    5. 5)
      • 31. IEEE Task Force: ‘IEEE reliability test system’, IEEE Trans. Power Appl. Syst., 1979, PAS-98, (6), pp. 20472054.
    6. 6)
      • 22. Wangdee, W., Billinton, R.: ‘Considering load-carrying capability and wind speed correlation of WECS in generation adequacy assessment’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 734741.
    7. 7)
      • 2. Leite da Silva, A.M., Arienti, V.L., Allan, R.N.: ‘Probabilistic load flow considering dependence between input nodal powers’, IEEE Trans. Power Appl. Syst., 1984, PAS-103, (6), pp. 15241530.
    8. 8)
      • 24. Correia, P.F., Ferreira de Jesus, J.M.: ‘Simulation of correlated wind speed and power variates in wind parks’, Electr. Power Syst. Res., 2010, 80, (5), pp. 592598.
    9. 9)
      • 12. Usaola, J.: ‘Probabilistic load flow with correlated wind power injections’, Electr. Power Syst. Res., 2010, 80, (5), pp. 528536.
    10. 10)
      • 25. Villanueva, D., Feijóo, A., Pazos, J.L.: ‘Simulation of correlated wind speed data for economic dispatch evaluation’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 142149.
    11. 11)
      • 16. Singh, C., Billinton, R.: ‘Frequency and duration concepts in system reliability evaluation’, IEEE Trans. Reliab., 1975, R-24, (1), pp. 3136.
    12. 12)
      • 32. Wind speed data from the network of AWOS sensors in the state of Iowa’, Available at http://mesonet.agron.iastate.edu/request/awos/1min.php, accessed 20 August 2018.
    13. 13)
      • 4. Zhang, P., Lee, S.T.: ‘Probabilistic load flow computation using the method of combined cumulants and Gram–Charlier expansion’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 676682.
    14. 14)
      • 27. Billinton, R., Wangdee, W.: ‘Delivery point reliability indices of a bulk electric system using sequential Monte Carlo simulation’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 345352.
    15. 15)
      • 3. Allan, R.N., Leite da Silva, A.M., Burchett, R. C.: ‘Evaluation methods and accuracy in probabilistic load flow solutions’, IEEE Trans. Power Appl. Syst., 1981, PAS-100, (5), pp. 25392546.
    16. 16)
      • 20. Billinton, R., Chen, H., Ghajar, R.: ‘Time-series models for reliability evaluation of power systems including wind energy’, Microelectron. Reliab., 1996, 36, (9), pp. 12531261.
    17. 17)
      • 15. Xiao, Q.: ‘Comparing three methods for solving probabilistic optimal power flow’, Electr. Power Syst. Res., 2015, 124, pp. 9299.
    18. 18)
      • 17. Prabhakara, F.S., Miller, J.J., Kazibwe, W.E.: ‘Frequency and duration of voltage drop in plants with intermittent loads’. IEEE Industry Applications Society, Annual Meeting, Dearborn, MI, USA, 4 October 1991, vol. 2, pp. 15841590.
    19. 19)
      • 5. Hu, Z., Wang, X.: ‘A probabilistic load flow method considering branch outages’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 507514.
    20. 20)
      • 13. Yu, H., Chung, C.Y., Wong, K.P., et al: ‘Probabilistic load flow evaluation with hybrid Latin hypercube sampling and Cholesky decomposition’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 661667.
    21. 21)
      • 6. Allan, R.N., Leite da Silva, A.M.: ‘Probabilistic load flow using multilinearisations’, Proc. Inst. Electr. Eng. C, 1981, 128, (5), pp. 280287.
    22. 22)
      • 18. Hong, Y.Y., Pen, K.L.: ‘Optimal VAR planning considering intermittent wind power using Markov model and quantum evolutionary algorithm’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29872996.
    23. 23)
      • 11. Usaola, J.: ‘Probabilistic load flow in systems with wind generation’, IET Gener. Transm. Distrib., 2009, 3, (12), pp. 10311041.
    24. 24)
      • 34. Billinton, R., Kumar, S., Chowdhury, N., et al: ‘A reliability test system for educational purposes-basic data’, IEEE Trans. Power Syst., 1989, 4, (3), pp. 12381244.
    25. 25)
      • 8. Morales, J.M., Baringo, L., Conejo, A.J., et al: ‘Probabilistic power flow with correlated wind sources’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 641651.
    26. 26)
      • 23. IEEE Task Force: ‘Capacity value of wind power’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 564572.
    27. 27)
      • 19. Zhu, J.Z., Zhao, T., Zhang, Y.: ‘A Markov chain based method for probabilistic load flow with wind power’. 2017 IEEE Power and Energy Society General Meeting, Chicago, IL, USA, Jul. 2017, pp. 15.
    28. 28)
      • 21. Billinton, R., Chen, H., Ghajar, R.: ‘A sequential simulation technique for adequacy evaluation of generating systems including wind energy’, IEEE Trans. Energy Convers., 1996, 11, (4), pp. 728734.
    29. 29)
      • 30. Giorsetto, P., Utsurogi, K.F.: ‘Development of a new procedure for reliability modeling of wind turbine generators’, IEEE Trans. Power Appl. Syst., 1983, PAS-102, (1), pp. 134143.
    30. 30)
      • 26. Sankarakrishnan, A., Billinton, R.: ‘Sequential Monte Carlo simulation for composite power system reliability analysis with time varying loads’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 15401545.
    31. 31)
      • 7. Cai, D., Chen, J., Shi, D., et al: ‘Enhancements to the cumulant method for probabilistic load flow studies’. 2012 IEEE Power and Energy Society General Meeting, San Diego, CA USA, Jul. 2012, pp. 18.
    32. 32)
      • 14. Chen, Y., Weng, J., Cheng, S.: ‘Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 294301.
    33. 33)
      • 1. Borkowska, B.: ‘Probabilistic load flow’, IEEE Trans. Power Appl. Syst., 1974, PAS-93, (3), pp. 752759.
    34. 34)
      • 10. Zhang, L., Chen, H., Zhang, S., et al: ‘A novel point estimate method for probabilistic power flow considering correlated nodal power’. 2014 IEEE Power and Energy Society General Meeting, National Harbor, MD, USA, Jul. 2014, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6530
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6530
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading