http://iet.metastore.ingenta.com
1887

Noise-resilient voltage and frequency synchronisation of an autonomous microgrid

Noise-resilient voltage and frequency synchronisation of an autonomous microgrid

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

We present a new noise-resilient secondary control scheme for voltage and frequency synchronisation of an autonomous microgrid (MG). The communication network is an integral part of distributed secondary control structure. The communication links among the distributed generator units are assumed to be ideal in nature. However, the communication links are subjected to uncertain noises, which can significantly affect the synchronisation performance of MG control. We consider the information received over the communication link is corrupted with generalised Gaussian noise. Further, the complete non-linear model of the MG system has been considered for designing a robust distributed control scheme augmented with an auxiliary corrective control input to counterbalance the impact of noises. The performance of the proposed control scheme is evaluated by pursuing simulation of a MG test system in MATLAB/SimPoweSystem environment under load perturbation, changes in communication topology, communication link delays, data dropout, and variations in noise parameter. The results of a comparative assessment of the proposed control scheme with two approaches first a neighbourhood tracking error-based control scheme and second a noise-resilient control scheme are presented to illustrate the effectiveness of the proposed robust noise-resilient control scheme in voltage and frequency synchronisation and accurate active power-sharing.

References

    1. 1)
      • 1. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    2. 2)
      • 2. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    3. 3)
      • 3. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    4. 4)
      • 4. Shrivastava, S., Subudhi, B., Das, S.: ‘Distributed voltage and frequency synchronisation control scheme for islanded inverter-based microgrid’, IET Smart Grid, 2018, 1, (2), pp. 4856.
    5. 5)
      • 5. Shrivastava, S., Subudhi, B., Das, S.: ‘Consensus-based voltage and frequency restoration scheme for inertia-less islanded microgrid with communication latency’. 2017 IEEE Region 10 Conf. (TENCON 2017), Penang, Malaysia, 2017, pp. 745750.
    6. 6)
      • 6. Guerrero, J.M., Chandorkar, M., Lee, T.L., et al: ‘Advanced control architectures for intelligent microgrids-part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    7. 7)
      • 7. Bidram, A., Davoudi, A.: ‘Hierarchical structure of microgrids control system’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19631976.
    8. 8)
      • 8. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled ac and dc microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    9. 9)
      • 9. Cady, S.T., Domnguez-Garca, A.D., Hadjicostis, C.N.: ‘A distributed generation control architecture for islanded ac microgrids’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 17171735.
    10. 10)
      • 10. Tan, K., Peng, X., So, P.L., et al: ‘Centralized control for parallel operation of distributed generation inverters in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 19771987.
    11. 11)
      • 11. Vovos, P.N., Kiprakis, A.E., Wallace, A.R., et al: ‘Centralized and distributed voltage control: impact on distributed generation penetration’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 476483.
    12. 12)
      • 12. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    13. 13)
      • 13. Bidram, A., Lewis, F.L., Davoudi, A.: ‘Distributed control systems for small-scale power networks: using multiagent cooperative control theory’, IEEE Control Syst., 2014, 34, (6), pp. 5677.
    14. 14)
      • 14. Simpson-Porco, J.W., Shafiee, Q., Dörfler, F., et al: ‘Secondary frequency and voltage control of islanded microgrids via distributed averaging’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70257038.
    15. 15)
      • 15. Guo, F., Wen, C., Mao, J., et al: ‘Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 43554364.
    16. 16)
      • 16. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids – a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    17. 17)
      • 17. Nasirian, V., Shafiee, Q., Guerrero, J.M., et al: ‘Droop-free distributed control for ac microgrids’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 16001617.
    18. 18)
      • 18. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Distributed cooperative secondary control of microgrids using feedback linearization’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34623470.
    19. 19)
      • 19. Lu, X., Yu, X., Lai, J., et al: ‘A novel distributed secondary coordination control approach for islanded microgrids’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 27262740.
    20. 20)
      • 20. Ahumada, C., Cárdenas, R., Sáez, D., et al: ‘Secondary control strategies for frequency restoration in islanded microgrids with consideration of communication delays’, IEEE Trans. Smart Grid, 2016, 7, (3), pp. 14301441.
    21. 21)
      • 21. Lu, X., Chen, N., Wang, Y., et al: ‘Distributed impulsive control for islanded microgrids with variable communication delays’, IET Control Theory Appl., 2016, 10, (14), pp. 17321739.
    22. 22)
      • 22. Lai, J., Zhou, H., Lu, X., et al: ‘Droop-based distributed cooperative control for microgrids with time-varying delays’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 17751789.
    23. 23)
      • 23. Proakis, J.G., Salehi, M., Zhou, N., et al: ‘Communication systems engineering’, vol. 2 (Prentice-Hall, New Jersey, 1994).
    24. 24)
      • 24. Hu, J., Feng, G.: ‘Distributed tracking control of leader–follower multi-agent systems under noisy measurement’, Automatica, 2010, 46, (8), pp. 13821387.
    25. 25)
      • 25. Hong, Y., Chen, G., Bushnell, L.: ‘Distributed observers design for leader-following control of multi-agent networks’, Automatica, 2008, 44, (3), pp. 846850.
    26. 26)
      • 26. Abhinav, S., Schizas, I.D., Davoudi, A.: ‘Noise-resilient synchrony of ac microgrids’. IEEE Resilience Week (RWS, 2015), Philadelphia, PA, USA, 2015, pp. 16.
    27. 27)
      • 27. Dehkordi, N.M., Baghaee, H.R., Sadati, N., et al: ‘Distributed noise-resilient secondary voltage and frequency control for islanded microgrids’, IEEE Trans. Smart Grid, 2018.
    28. 28)
      • 28. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476.
    29. 29)
      • 29. Godcil, C., Royle, G.: ‘Algebraic graph theory: springer graduate texts in mathematics 207’ (Springer-Verlag, New York, 2001).
    30. 30)
      • 30. Arabi, E., Yucelen, T., Haddad, W.M.: ‘Mitigating the effects of sensor uncertainties in networked multi-agent systems’, J. Dyn. Syst. Meas. Control, 2017, 139, (4), p. 041003.
    31. 31)
      • 31. Tiwari, R., Deshmukh, S.: ‘Prior information based Bayesian MMSE estimation of velocity in Hetnets’, IEEE Wirel. Commun. Lett., 2018.
    32. 32)
      • 32. He, J., Li, Y.W., Guerrero, J.M., et al: ‘An islanding microgrid power sharing approach using enhanced virtual impedance control scheme’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 52725282.
    33. 33)
      • 33. IEEE standard conformance test procedures for equipment interconnecting distributed resources with electric power systems - amendment 1’. IEEE Std 15471a-2015 (Amendment to IEEE Std 15471-2005), 2015, pp. 127.
    34. 34)
      • 34. Fu, J., Wang, J.Z.: ‘Finite-time consensus for multi-agent systems with globally bounded convergence time under directed communication graphs’, Int. J. Control, 2017, 90, (9), pp. 18071817.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6409
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6409
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address