Your browser does not support JavaScript!

access icon free Resilient wide-area multi-mode controller design based on Bat algorithm for power systems with renewable power generation and battery energy storage systems

Modern power systems consist of power electronics devices, which are used in renewable energy (RE) conversion. However, these devices, associated controllers, and uncertainty in RE output could bring new challenges to power system stability, especially oscillatory stability. Hence, the integration of battery energy storage systems (BESSs) is being developed to minimise the uncertainty and variability in renewables. Furthermore, to tackle the complex dynamics and inertia-less characteristics of wind and PV plants additional controllers such as power oscillation damping (POD) control and virtual inertia scheme are sought. However, the primary challenges associated with the wide-area oscillation damping controller are signal transmission delay, loss of communication signal, data drops, and others. This paper proposes a bat algorithm (BA) based resilient wide-area multi-mode controller (MMC) for enhancing oscillatory stability margin with high penetration of renewable power generations (RPGs) and BESSs. The Java 500 kV Indonesian grid is used to evaluate the performance of the resilient wide-area MMC. From the results, it is found that the proposed controller effectively damp the critical mode of oscillation in the system even under communication failure as well as certain damping controller failures.


    1. 1)
      • 7. El-Shimy, M., Sharaf, A., Khairy, H., et al: ‘Reduced-order modelling of solar-PV generators for small-signal stability assessment of power systems and estimation of maximum penetration levels’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 18381847.
    2. 2)
      • 6. Guo, C., Liu, W., Zhao, J., et al: ‘Impact of control system on small-signal stability of hybrid multi-infeed HVDC system’, IET Gener. Transm. Distrib., 2018, 12, (19), pp. 42334239.
    3. 3)
      • 28. Zhang, Y., Preece, R.: ‘A comprehensive methodology for assessing power oscillation damping controllers for HVDC-based system stabilization’. IEEE Eindhoven PowerTech, Eidenhoven, Netherlands, 2015.
    4. 4)
      • 20. Li, P., Xu, D., Zhou, Z., et al: ‘Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 6673.
    5. 5)
      • 27. Zou, Y., He, J.: ‘Comprehensive modeling, simulation and experimental validation of permanent magnet synchronous generator wind power system’. IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conf. (I&CPS), Detroit, USA, 2016.
    6. 6)
      • 34. WECC-0107 Power System Stabilizer (PSS) Design and Performance WECC Regional Reliability Standard, VAR-501-WECC-3-Power System Stabilizer, 2016.
    7. 7)
      • 10. Zhou, Y., Li, Y., Liu, W., et al: ‘The stochastic response surface method for small-signal stability study of power system with probabilistic uncertainties in correlated photovoltaic and loads’, IEEE Trans. Power Systems, 2017, 32, (6), pp. 45514559.
    8. 8)
      • 5. Huang, H., Chung, C., Chan, K.W., et al: ‘Quasi-Monte carlo based probabilistic small signal stability analysis for power systems with plug-in electric vehicle and wind power integration’, IEEE Trans. Power Systems, 2013, 28, (3), pp. 33353343.
    9. 9)
      • 24. WECC guide for representation of photovoltaic systems in large-scale load flow simulation’. WECC Renewable Energy Modeling Task Force Report, 2010.
    10. 10)
      • 16. Surinkaew, T., Ngamroo, I.: ‘Two-level coordinated controllers for robust inter-area oscillation damping considering impact of local latency’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 45204530.
    11. 11)
      • 26. Clark, K., Miller, N.W., Walling, R.: ‘Modelling of GE solar photovoltaic plants for grid studies’ (General Electrical International, Inc., Schenectady, NY, 2010).
    12. 12)
      • 37. Shakarami, M., Davoudkhani, I.F.: ‘Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay’, Electr. Power Syst. Res., 2016, 133, pp. 149159.
    13. 13)
      • 17. Shen, Y., Yao, W., Wen, J., et al: ‘Resilient wide-area damping control using GrHDP to tolerate communication failures’. IEEE Trans. Smart Grid, 2018, pp. 11, doi: 10.1109/TSG.2018.2803822.
    14. 14)
      • 31. Setiadi, H., Mithulananthan, N., Krismanto, A.U., et al: ‘Low-frequency oscillatory stability study on 500 kV java-Indonesian electric grid’. IEEE 27th Int. Symp. on Industrial Electronics (ISIE), Cairns, Australia, 2018.
    15. 15)
      • 30. Pal, B., Chaudhuri, B.: ‘Robust control in power systems’ (Springer Science & Business Media, UK, 2006).
    16. 16)
      • 22. Zhou, J., Wang, C., Li, Y., et al: ‘A multi-objective multi-population ant colony optimization for economic emission dispatch considering power system security’, Appl. Math. Model., 2017, 45, pp. 684704.
    17. 17)
      • 23. Lu, C.-F., Liu, C.-C., Wu, C.-J.: ‘Dynamic modelling of battery energy storage system and application to power system stability’, IEE Proc., Gener. Transm. Distrib., 1995, 142, (4), pp. 429435.
    18. 18)
      • 18. Chitara, D., Niazi, K.R., Swarnkar, A., et al: ‘Cuckoo search optimization algorithm for designing a multimachine power system stabilizer’, IEEE Trans. Industry Applications, 2018, 54, (4), pp. 30563065.
    19. 19)
      • 1. Hannan, M.A., Islam, M.N., Mohamed, A., et al: ‘Artificial intelligent based damping controller optimization for the multi-machine power system: a review’, IEEE. Access., 2018, 6, pp. 3957439594.
    20. 20)
      • 35. Marlin, T.E.: ‘Process control, designing processes and control systems for dynamic Performance’ (McGraw-Hill, New York, 1995).
    21. 21)
      • 21. Bai, W., Eke, I., Kwang Lee, Y.: ‘An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem’, Control Eng. Pract., 2017, 61, pp. 163172.
    22. 22)
      • 33. Paserba, J.: ‘Analysis and control of power system oscillation’, CIGRE Technical Brochures, 1996, 38, (7), pp. 1287.
    23. 23)
      • 8. Ma, J., Qiu, Y., Li, Y., et al: ‘Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop’, IEEE Trans. Power Systems, 2017, 32, (3), pp. 20942105.
    24. 24)
      • 12. Akram, U., Khalid, M.: ‘A coordinated frequency regulation framework based on hybrid battery-ultracapacitor energy storage technologies’, IEEE. Access., 2018, 6, pp. 73107320.
    25. 25)
      • 2. Pan, Y., Liu, F., Chen, L., et al: ‘Towards the robust small-signal stability region of power systems under perturbations such as uncertain and volatile wind generation’, IEEE Trans. Power Systems, 2018, 33, (2), pp. 17901799.
    26. 26)
      • 25. Standard report for Variable generation’. NERC Special Report, Atlanta, GA, 2010.
    27. 27)
      • 36. Padhy, B.P., Srivastava, S.C., Verma, N.K.: ‘A wide-area damping controller considering network input and output delays and packet drop’, IEEE Trans. Power Systems, 2017, 32, (1), pp. 166176.
    28. 28)
      • 32. Jia, H., Cao, X., Yu, X., et al: ‘A simple approach to determine power system delay margin’. IEEE Power Engineering Society General Meeting, Tampa, USA, 2007.
    29. 29)
      • 4. Yorino, N., Abdillah, M., Sasaki, Y., et al: ‘Robust power system security assessment under uncertainties using bi-level optimization’, IEEE Trans. Power Systems, 2018, 33, (1), pp. 352362.
    30. 30)
      • 29. Yang, X.-S.: ‘A New metaheuristic Bat-inspired algorithm’. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010): Springer, Berlin, 2010.
    31. 31)
      • 14. Lu, C., Wu, X., Wu, J., et al: ‘Implementations and experiences of wide-area HVDC damping control in China southern power grid’. IEEE Power and Energy Society General Meeting, San Diego, USA, 2012.
    32. 32)
      • 13. Chandra, S., Gayme, D.F., Chakrabortty, A.: ‘Coordinating wind farms and battery management systems for inter-area oscillation damping: a frequency-domain approach’, IEEE Trans. Power Systems, 2014, 29, (3), pp. 14541462.
    33. 33)
      • 19. Wang, S.-K.: ‘Coordinated parameter design Of power system stabilizers And static synchronous compensator using gradual hybrid differential evaluation’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 165174.
    34. 34)
      • 9. Bian, X.Y., Geng, Y., Lo, K.L., et al: ‘Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of power system with wind farm integration’, IEEE Trans. Power Systems, 2016, 31, (3), pp. 23712382.
    35. 35)
      • 11. Deeba, S.R., Sharma, R., Saha, T.K., et al: ‘Evaluation of technical and financial benefits of battery-based energy storage systems in distribution networks’, IET Renew. Power Gener., 2016, 10, (8), pp. 11491160.
    36. 36)
      • 15. Ray, S., Venayagamoorthy, G.K.: ‘Real-time implementation of a measurement-based adaptive wide-area control system considering communication delays’, IET Gener. Transm. Distrib., 2008, 2, (1), pp. 6270.
    37. 37)
      • 3. Setiadi, H., Krismanto, A.U., Mithulananthan, N., et al: ‘Modal interaction of power systems with high penetration of renewable energy and BES systems’, Int. J. Electr. Power Energy Syst., 2018, 97, pp. 385395.

Related content

This is a required field
Please enter a valid email address