http://iet.metastore.ingenta.com
1887

Adaptive protection methodology in microgrid for fault location and nature detection using q0 components of fault current

Adaptive protection methodology in microgrid for fault location and nature detection using q0 components of fault current

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The dynamic behaviour of microgrid system under faulty conditions makes adaptive protection a general necessity for reliable microgrid operation. In design of adaptive protection, the grid-connected and islanded modes have immense importance including grid-connected mode without distributed generators (DGs) in microgrid. In this study, a new adaptive protection scheme is proposed based on the above-mentioned modes of microgrid operation. The proposed method considers nature of DGs connected, fault location detection and fault nature identification based on quadrature and zero sequence components of fault current considering impact of X/R ratio of DGs. The proposed methodologies for adaptive protection schemes are verified in Matlab-Simulink environment and the results are found to be satisfactory while various faults are simulated at different nodes of the microgrid model. At the time of verification of effectiveness of the proposed methodologies, the time derivative of quadrature and zero-axis components of fault current are considered sufficient to instantaneously detect the fault location and fault nature in microgrid system.

References

    1. 1)
      • 1. Nikkhajoei, H., Lasseter, R.H.: ‘Microgrid protection’. Proc. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, June 2007, pp. 16.
    2. 2)
      • 2. Sallam, A.A., Malik, O.P.: ‘Electric distribution systems’ (John Wiley & Sons, New York, NY, USA, 2011), pp. 163235.
    3. 3)
      • 3. Mirsaeidi, S., Dong, X., Shi, S., et al: ‘Challenges, advances and future directions in protection of hybrid AC/DC microgrids’, IET Renew. Power Gener., 2017, 11, (12), pp. 14951502.
    4. 4)
      • 4. Hatziargyriou, N. (Ed.): ‘Microgrids: architectures and control’ (John Wiley & Sons, Hoboken, NJ, USA, 2014).
    5. 5)
      • 5. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    6. 6)
      • 6. Ustun, T.S., Ozansoy, C., Ustun, A.: ‘Fault current coefficient and time delay assignment for microgrid protection system with central protection unit’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 598606.
    7. 7)
      • 7. Nthontho, M.P., Chowdhury, S.P., Winberg, S., et al: ‘Protection of domestic solar photovoltaic based microgrid’. Proc. Int. Conf. Developments in Power Systems Protection, Birmingham, UK, April 2012, pp. 16.
    8. 8)
      • 8. Buque, C., Ipinnimo, O., Chowdhury, S., et al: ‘Modeling and simulation of an adaptive relaying scheme for a microgrid’. Power and Energy Society General Meeting, San Diego, CA, USA, July 2012, pp. 18.
    9. 9)
      • 9. IEEE 802.16: ‘IEEE standard for local and metropolitan area networks’, 2004, pp. 1620.
    10. 10)
      • 10. Lin, H., Guerrero, J.M., Vásquez, J.C., et al: ‘Adaptive distance protection for microgrids’. IECON 2015 – 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, November 2015, pp. 725730.
    11. 11)
      • 11. Ozansoy, C.: ‘A methodology for determining fault current impact coefficients of distributed energy resources in an adaptive protection scheme’. Proc. Int. Conf. ELECO, Bursa, Turkey, November 2015, pp. 479483.
    12. 12)
      • 12. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 15601567.
    13. 13)
      • 13. Ustun, T.S., Khan, R.H.: ‘Multiterminal hybrid protection of microgrids over wireless communications network’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 24932500.
    14. 14)
      • 14. Jin, L., Jiang, M., Yang, G.: ‘Fault analysis of microgrid and adaptive distance protection based on complex wavelet transform’. Proc. Int. Conf. Power Electronics and Application Conf. and Exposition (PEAC), Shanghai, China, November 2014, pp. 360364.
    15. 15)
      • 15. Orji, U., Schantz, C., Leeb, S.B., et al: ‘Adaptive zonal protection for ring microgrids’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 18431851.
    16. 16)
      • 16. Barker, P.P., De Mello, R.W.: ‘Determining the impact of distributed generation on power systems. I. Radial distribution systems’. IEEE Power Engineering Society Summer Meeting, Seattle, WA, USA, July 2000, vol. 3, pp. 16451656.
    17. 17)
      • 17. Kar, S., Ranjan Samantaray, S.: ‘A fuzzy rule base approach for intelligent protection of microgrids’, Electr. Power Compon. Syst., 2015, 43, (18), pp. 20822093.
    18. 18)
      • 18. Cintuglu, M.H., Ma, T., Mohammed, O.A.: ‘Protection of autonomous microgrids using agent-based distributed communication’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 351360.
    19. 19)
      • 19. Fani, B., Bisheh, H., Sadeghkhani, I.: ‘Protection coordination scheme for distribution networks with high penetration of photovoltaic generators’, IET Gener. Transm. Distrib., 2017, 12, (8), pp. 18021814.
    20. 20)
      • 20. Farhan, M.A., Swarup, K.S.: ‘Mathematical morphology-based islanding detection for distributed generation’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 518525.
    21. 21)
      • 21. Gururani, A., Mohanty, S.R., Mohanta, J.C.: ‘Microgrid protection using Hilbert–Huang transform based-differential scheme’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37073716.
    22. 22)
      • 22. Kar, S., Samantaray, S.R., Zadeh, M.D.: ‘Data-mining model based intelligent differential microgrid protection scheme’, IEEE Syst. J., 2017, 11, (2), pp. 11611169.
    23. 23)
      • 23. Liu, X., Shahidehpour, M., Li, Z., et al: ‘Protection scheme for loop-based microgrids’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 13401349.
    24. 24)
      • 24. Mishra, M., Rout, P.K.: ‘Detection and classification of micro-grid faults based on HHT and machine learning techniques’, IET Gener. Transm. Distrib., 2017, 12, (2), pp. 388397.
    25. 25)
      • 25. Muda, H., Jena, P.: ‘Superimposed adaptive sequence current based microgrid protection: a new technique’’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 757767.
    26. 26)
      • 26. Habib, H.F., Lashway, C.R., Mohammed, O.A.: ‘A review of communication failure impacts on adaptive microgrid protection schemes and the use of energy storage as a contingency’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 11941207.
    27. 27)
      • 27. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    28. 28)
      • 28. Choi, S., Meliopoulos, A.S.: ‘Effective real-time operation and protection scheme of microgrids using distributed dynamic state estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 504514.
    29. 29)
      • 29. Dutta, R., Samantaray, S.R.: ‘Assessment of impedance based fault locator for AC micro-grid’, Renew. Energy Focus, 2018, 26, pp. 110.
    30. 30)
      • 30. Som, S., Samantaray, S.R.: ‘Efficient protection scheme for low-voltage DC micro-grid’, IET Gener. Transm. Distrib., 2018, 12, (13), pp. 33223329.
    31. 31)
      • 31. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’ (McGraw-hill, New York, NY, USA, 1994).
    32. 32)
      • 32. Bimbhra, P.S.: ‘Electrical machines’ (Khanna Publisher, New Delhi, India, 2014).
    33. 33)
      • 33. Krause, P., Wasynczuk, O., Sudhoff, S.D., et al: ‘Analysis of electric machinery and drive systems’ (John Wiley &Sons., New York, NY, USA, 2013).
    34. 34)
      • 34. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    35. 35)
      • 35. Swathika, O.G., Hemamalini, S.: ‘Prims-aided Dijkstra algorithm for adaptive protection in microgrids’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (4), pp. 12791286.
    36. 36)
      • 36. Farhan, M.A.: ‘Mathematical morphology-based islanding detection for distributed generation’, IET Gener. Transm. Distrib., 2017, 11, (14), pp. 34493457.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6347
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address