http://iet.metastore.ingenta.com
1887

Artificial neural network and phasor data-based islanding detection in smart grid

Artificial neural network and phasor data-based islanding detection in smart grid

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Islanding is an unusual condition in a power system where the generating station continues to supply the local load after one or multiple transmission line outage. This study develops a new islanding detection technique using the artificial neural network (ANN) classifier, which is provided with synchronised phasor measurements from a nine-bus Western Electricity Coordinating Council power system. An excessive number of data frames are generated in the phasor data concentrator. Before sending these data to the classifier, multiplier-based method (MBM) and Andrews plot-based method (APBM) are applied for dimension reduction and feature extraction. Comparisons are prepared with other dimension reduction algorithms. The accuracy of the classifier has been increased by increasing the number of hidden layers, the best accuracy is observed at a certain level for APBM. Non-detection zone (NDZ) for APBM is also evaluated. It is observed that the classification accuracy, and the detection time change when the neural network is retrained. All the results are compared and analysed statistically. This method can perform faster compared to other existing algorithms with an excellent accuracy and smaller NDZ.

References

    1. 1)
      • 1. Gaing, Z.L.: ‘Wavelet-based neural network for power disturbance recognition and classification’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 15601568.
    2. 2)
      • 2. El-Arroudi, K., Joos, G.: ‘Data mining approach to threshold settings of islanding relays in distributed generation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 11121119.
    3. 3)
      • 3. El-Arroudi, K., Joos, G., Kamwa, I., et al: ‘Intelligent-based approach to islanding detection in distributed generation’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 828835.
    4. 4)
      • 4. Najy, W.K., Zeineldin, H.H., Alaboudy, A.H., et al: ‘A Bayesian passive islanding detection method for inverter-based distributed generation using ESPRIT’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 26872696.
    5. 5)
      • 5. Khamis, A., Shareef, H., Mohamed, A., et al: ‘Islanding detection in a distributed generation integrated power system using phase space technique and probabilistic neural network’, Neurocomputing, 2015, 148, pp. 587599.
    6. 6)
      • 6. Khamis, A., Shareef, H., Mohamed, A.: ‘Islanding detection and load shedding scheme for radial distribution systems integrated with dispersed generations’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 22612275.
    7. 7)
      • 7. Merlin, V.L., Santos, R.C., Grilo, A.P., et al: ‘A new artificial neural network based method for islanding detection of distributed generators’, Int. J. Electr. Power Energy Syst., 2016, 75, pp. 139151.
    8. 8)
      • 8. Samet, H., Hashemi, F., Ghanbari, T.: ‘Minimum non detection zone for islanding detection using an optimal artificial neural network algorithm based on PSO’, Renew. Sust. Energy Rev., 2015, 52, pp. 118.
    9. 9)
      • 9. Raza, S., Mokhlis, H., Arof, H., et al: ‘Minimum-features-based ANN-PSO approach for islanding detection in distribution system’, IET Renew. Power Gener., 2016, 10, (9), pp. 12551263.
    10. 10)
      • 10. Khamis, A., Xu, Y., Dong, Z.Y., et al: ‘Faster detection of microgrid islanding events using an adaptive ensemble classifier’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 18891899.
    11. 11)
      • 11. Kermany, S.D., Joorabian, M., Deilami, S., et al: ‘Hybrid islanding detection in microgrid with multiple connection points to smart grids using fuzzy-neural network’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 26402651.
    12. 12)
      • 12. Samantaray, S.R., Chitti Babu, B., Dash, P.K.: ‘Probabilistic neural network-based islanding detection in distributed generation’, Electr. Power Compon. Syst., 2011, 39, (3), pp. 191203.
    13. 13)
      • 13. Marchesan, G., Muraro, M.R., Cardoso, G., et al: ‘Passive method for distributed-generation island detection based on oscillation frequency’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 138146.
    14. 14)
      • 14. Almas, M.S., Vanfretti, L.: ‘RT-HIL implementation of the hybrid synchrophasor and GOOSE-based passive islanding schemes’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 12991309.
    15. 15)
      • 15. Gomez, O., Rios, M.A.: ‘Real time identification of coherent groups for controlled islanding based on graph theory’, IET Gener. Transm. Distrib., 2015, 9, (8), pp. 748758.
    16. 16)
      • 16. Laverty, D.M., Best, R.J., Morrow, D.J.: ‘Loss-of-mains protection system by application of phasor measurement unit technology with experimentally assessed threshold settings’, IET Gener. Transm. Distrib., 2015, 9, (2), pp. 146153.
    17. 17)
      • 17. Lin, Z., Xia, T., Ye, Y., et al: ‘Application of wide area measurement systems to islanding detection of bulk power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 20062015.
    18. 18)
      • 18. Borghetti, A., Nucci, C.A., Paolone, M., et al: ‘Synchronized phasors monitoring during the islanding maneuver of an active distribution network’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 8291.
    19. 19)
      • 19. Borghetti, A., Nucci, C.A., Paolone, M., et al: ‘Synchronized phasors monitoring during the islanding maneuver of an active distribution network’. Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, 2010, pp. 18.
    20. 20)
      • 20. Rafferty, M., Liu, X., Laverty, D.M., et al: ‘Real-time multiple event detection and classification using moving window PCA’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25372548.
    21. 21)
      • 21. Guo, Y., Li, K., Laverty, D.M., et al: ‘Synchrophasor-based islanding detection for distributed generation systems using systematic principal component analysis approaches’, IEEE Trans. Power Deliv., 2015, 30, (6), pp. 25442552.
    22. 22)
      • 22. Hashiesh, F., Mostafa, H.E., Khatib, A.R., et al: ‘An intelligent wide area synchrophasor based system for predicting and mitigating transient instabilities’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 645652.
    23. 23)
      • 23. Kumar, D., Ghosh, D., Mohanta, D.K.: ‘Simulation of phasor measurement unit (PMU) in MATLAB’. Int. Conf. on Signal Processing and Communication Engineering Systems, Guntur, India, 2015, pp. 1518.
    24. 24)
      • 24. Kumar, D., Ghosh, D., Mohanta, D.K.: ‘Modeling and testing of frequency adaptive phasor measurement unit’. Michael Faraday IET Int. Summit 2015, Kolkata, India, 2015, pp. 505510.
    25. 25)
      • 25. Kumar, D., Ali, N.: ‘Direct and indirect measurements of power system states in off-nominal condition’. 2nd Int. Conf. Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 2016, pp. 240244.
    26. 26)
      • 26. Kumar, D., Bhowmik, P.S.: ‘Wide area islanding detection using phasor measurement unit’. 11th Int. Conf. Intelligent Systems and Control (ISCO), Coimbatore, India, 2017, pp. 4954.
    27. 27)
      • 27. Phadke, A.G., Thorp, J.S.: ‘Synchronized phasor measurements and their applications’ (Springer, New York, NY, 2008), vol. 1.
    28. 28)
      • 28. Khattree, R., Naik, D.N.: ‘Andrews plots for multivariate data: some new suggestions and applications’, J. Stat. Plan. Inference, 2002, 100, (2), pp. 411425.
    29. 29)
      • 29. Garcia-Osorio, C., Fyfe, C.: ‘The combined use of self-organizing maps and Andrews’ curves’, Int. J. Neural Syst., 2005, 15, (3), pp. 197206.
    30. 30)
      • 30. Moustafa, R.E.: ‘Andrews curves’, Wiley Interdiscip. Rev. Comput. Stat., 2011, 3, (4), pp. 373382.
    31. 31)
      • 31. Roscoe, A.J., Abdulhadi, I.F., Burt, G.M.: ‘P and M class phasor measurement unit algorithms using adaptive cascaded filters’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 14471459.
    32. 32)
      • 32. Liu, X., Laverty, D.M., Best, R.J., et al: ‘Principal component analysis of wide-area phasor measurements for islanding detection – a geometric view’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 976985.
    33. 33)
      • 33. Liu, X, Kennedy, J.M., Laverty, D.M., et al: ‘Wide-area phase-angle measurements for islanding detection – an adaptive nonlinear approach’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 19011911.
    34. 34)
      • 34. Wu, Z., Du, D., Gu, W., et al: ‘Optimal PMU placement considering load loss and relaying in distribution networks’, IEEE Access, 2018, 6, pp. 3364533653.
    35. 35)
      • 35. Lu, C., Wang, Z., Yu, Y.: ‘Optimal PMU placement for pessimistic dynamic vulnerability assessment’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 22312237.
    36. 36)
      • 36. Zhang, C., Jia, Y., Xu, Z, et al: ‘Optimal PMU placement considering state estimation uncertainty and voltage controllability’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 44654475.
    37. 37)
      • 37. Raju, V.V.R., Kumar, S.V.J.: ‘An optimal PMU placement method for power system observability’. 2016 IEEE Power and Energy Conf. at Illinois (PECI), Urbana, IL, 2016, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6299
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6299
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address