http://iet.metastore.ingenta.com
1887

access icon free Method for division of urban load power supply district based on cluster analysis

  • XML
    66.8623046875Kb
  • PDF
    2.322831153869629MB
  • HTML
    78.912109375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/20/IET-GTD.2018.6298.html;jsessionid=1ixbpqft0oujj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2018.6298&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Willis, H.L.: ‘Power distribution planning reference book’ (Taylor & Francis Inc Press, Bosa Roca, 1997, 2nd edn.).
    2. 2)
      • 2. Hasanvand, S., Nayeripour, M., Khooban, M.-H., et al: ‘Power system distribution planning considering reliability and DG owner's profit’, J. Renew. Sustain. Energy, 2017, 9, (6), p. 065508(18 pp.).
    3. 3)
      • 3. Liu, H., Ge, S.: ‘Research on power supply model of medium voltage distribution system’. Proc. IEEE Int. Conf. on Innovative Smart Grid Technologies, Tianjin, China, May 2012, pp. 15.
    4. 4)
      • 4. Kumar, D., Samantaray, S.R., Kamwa, I.: ‘Multi-objective design of advanced power distribution networks using restricted population based multi–objective seeker optimization algorithm and fuzzy operator’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 11951215.
    5. 5)
      • 5. Van Der Mei, A., Doomernik, J.-P.: ‘Artificial intelligence potential in power distribution system planning’. CIRED – Open Access Proc. J., 2017, 2017, (1), pp. 21152117.
    6. 6)
      • 6. Kanwar, N., Gupta, N., Niazi, K.R., et al: ‘Optimal distributed resource planning for microgrids under uncertain environment’, IET. Renew. Power Gener., 2018, 12, (2), pp. 244251.
    7. 7)
      • 7. Li, Z., Lou, Y., Liu, J., et al: ‘Optimal partition of power distribution network service areas based on improved K–means algorithm’. Proc. IEEE Int. Conf. on Power System Technology, Chengdu, China, October 2014, pp. 883889.
    8. 8)
      • 8. Vahedi, S., Banejad, M., Assili, M.: ‘Optimal location, sizing and allocation of subtransmission substations using K-means algorithm’. Proc. IEEE Int. Conf. on Power and Energy Society General Meeting, Denver, CO, USA, July 2015, pp. 15.
    9. 9)
      • 9. Chen, Y., Wang, S., Yu, J., et al: ‘Optimal weighted Voronoi diagram method of distribution network planning considering city planning coordination factors’. Fourth Annual IEEE Conf. on Systems and Informatics (ICSAI), Hangzhou, China, November 2017, pp. 335340.
    10. 10)
      • 10. Minjie, Z., Chongbin, W., Tianzhi W, , et al: ‘Adaptive power load forecasting method based on multi-source data’, Water Resour. Power, 2017, 35, (12), pp. 200203.
    11. 11)
      • 11. Mueller, U.P., Wienholt, L., Kleinhans, D., et al: ‘The eGo grid model: an open source approach towards a model of German high and extra-high voltage power grids’, J. Phys., Conf. Series, 2018, 997, p. 012003(16 pp.).
    12. 12)
      • 12. Medjroubi, W., Müller, U.P., Scharf, M., et al: ‘Open data in power grid modelling: new approaches towards transparent grid models’, Energy Rep., 2017, 3, pp. 1421.
    13. 13)
      • 13. Alhamwi, A., Medjroubi, W., Vogt, T., et al: ‘GIS–based urban energy systems models and tools: introducing a model for the optimisation of flexibilisation technologies in urban areas’, Appl. Energy, 2017, 19, pp. 19.
    14. 14)
      • 14. Manfren, M., Caputo, P., Costa, G.: ‘Paradigm shift in urban energy systems through distributed generation: methods and models’, Appl. Energy, 2011, 88, (4), pp. 10321048.
    15. 15)
      • 15. Roche, S.: ‘Geographic information science I why does a smart city need to be spatially enabled?’, Prog. Hum. Geogr., 2014, 38, (5), pp. 703711.
    16. 16)
      • 16. De Sisternes, F.J., Jenkins, J.D., Botterud, A.: ‘The value of energy storage in decarbonizing the electricity sector’, Appl. Energy, 2016, 175, pp. 368379.
    17. 17)
      • 17. Wiese, F., Bökenkamp, G., Wingenbach, C., et al: ‘An open source energy system simulation model as an instrument for public participation in the development of strategies for a sustainable future’, Wiley Interdiscip. Rev. Energy Environ., 2014, 3, (5), pp. 490504.
    18. 18)
      • 18. Böing, F., Murmann, A., Pellinger, C., et al: ‘Assessment of grid optimisation measures for the German transmission grid using open source grid data’, J. Phys., Conf. Series2018, 997, p. 012002(11 pp.).
    19. 19)
      • 19. Amme, J., Pleßmann, G., Bühler, J., et al: ‘The eGo grid model: an open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems’, J. Phys., Conf. Series,  2018, 997, p. 012007(22 pp.).
    20. 20)
      • 20. Cui, C., Han, Z.: ‘Spatial patterns of retail stores using POIs data in Zhengzhou, China’. Proc. IEEE Int. Conf. on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, July 2015, pp. 8892.
    21. 21)
      • 21. De Azevedo Kanehisa, R.F., Bezerra De Lemos, V.H., Silva Fonseca, A., et al: ‘A webGIS measurement and clustering planning system for electric power consumer units’. 13th Iberian Conf. on Information Systems and Technologies (CISTI), Caceres, Spain, June 2018, pp. 16.
    22. 22)
      • 22. Rodriguez, A., Laio, A.: ‘Clustering by fast search and find of density peaks’, Science, 2014, 344, (6191), pp. 14921496.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6298
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address