http://iet.metastore.ingenta.com
1887

Efficient method to compute all the type-1 low-voltage power flow solutions in distribution systems

Efficient method to compute all the type-1 low-voltage power flow solutions in distribution systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The power flow equations usually have multiple solutions including a high-voltage solution and many low-voltage solutions, among which only the type-1 solutions (where the power flow Jacobian matrix has only one positive real-part eigenvalue) are closely related to the voltage instability phenomenon. This study proposes an efficient method to compute all the type-1 low-voltage power flow solutions in distribution systems. First, the geometric properties of the power flow solution space of distribution systems have been studied. Second, the propositions which can guarantee to locate all the type-1 power flow solutions have been suggested and proved. Finally, the conventional implicit Z-bus method is modified to compute all the type-1 germ solutions, based on the suggested propositions; and then the Newton–Raphson method is utilised to trace all the type-1 low-voltage power flow solution branches which originate from the known type-1 germ solutions. The 7-node, 33-node, and 69-node systems are used to validate and demonstrate the proposed method.

References

    1. 1)
      • 1. Tamura, Y., Mori, H., Iwamoto, S.: ‘Relationship between voltage instability and multiple load flow solutions in electric power systems’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (5), pp. 11151125.
    2. 2)
      • 2. Tamura, Y., Sakamoto, K., Tayama, Y.: ‘Voltage instability proximity index (VIPI) based on multiple load flow solutions in ill-conditioned power systems’. Proc. 27th IEEE Conf. Decision and Control, 1988.
    3. 3)
      • 3. Overbye, T.J., DeMarco, C.L.: ‘Improved techniques for power system voltage stability assessment using energy methods’, IEEE Trans. Power Syst., 1991, 6, (4), pp. 14461452.
    4. 4)
      • 4. Yorino, N., Harada, S., Cheng, H.: ‘A method to approximate a closest loadability limit using multiple load flow solutions’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 424429.
    5. 5)
      • 5. Ajjarapu, V., Christy, C.: ‘The continuation power flow: a tool for steady state voltage stability analysis’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 416423.
    6. 6)
      • 6. Li, S.H., Chiang, H.D.: ‘Continuation power flow with nonlinear power injection variations: a piecewise linear approximation’, IEEE Trans. Power Syst., 2008, 23, (4), pp. 16371643.
    7. 7)
      • 7. Lee, C.Y., Tsai, S.H., Wu, Y.K.: ‘A new approach to the assessment of steady-state voltage stability margins using the P–Q–V curve’, Int. J. Electr. Power Energy Syst., 2010, 32, (10), pp. 10911098.
    8. 8)
      • 8. Zhang, X.P., Ju, P., Handschin, E.: ‘Continuation three-phase power flow: a tool for voltage stability analysis of unbalanced three-phase power systems’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13201329.
    9. 9)
      • 9. Hao, S., Chiang, H.-D.: ‘CDFLOW: a practical tool for tracing stationary behaviors of general distribution networks’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 13651371.
    10. 10)
      • 10. de Araujo, L.R., Penido, D.R.R., Pereira, J.L.R., et al: ‘Voltage security assessment on unbalanced multiphase distribution systems,IEEE Trans. Power Syst., 2015, 30, (6), pp. 32013208.
    11. 11)
      • 11. Tamura, Y.: ‘A method for finding multiple load flow solutions for general power systems’. IEEE PES Winter Meeting, 1980, p. A-80-043-0.
    12. 12)
      • 12. Martinez, D.J.A., Mahseredjian, J.: ‘Load flow calculations in distribution systems with distributed resources: a review’. IEEE Power and Energy Society General Meeting, 2011, pp. 18.
    13. 13)
      • 13. Salam, F.M.A., Ni, L., Guo, S., et al: ‘Parallel processing for the load flow of power systems: the approach and applications’. Proc. 28th IEEE Conf. Decision and Control, 1989, pp. 21732178.
    14. 14)
      • 14. Ma, W., Thorp, J.S.: ‘An efficient algorithm to locate all the load flow solutions’, IEEE Trans. Power Syst., 1993, 8, (3), pp. 10771083.
    15. 15)
      • 15. Mehta, D., Nguyen, H.D., Turitsyn, K.: ‘Numerical polynomial homotopy continuation method to locate all the power flow solutions’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 29722980.
    16. 16)
      • 16. Ning, J., Gao, W., Radman, G., et al: ‘The application of the Gröatbner basis technique in power flow study’. North American Power Symp. (NAPS), 2009, pp. 17.
    17. 17)
      • 17. Trias, A.: ‘The holomorphic embedding load flow method’. IEEE Power and Energy Society General Meeting, 2012.
    18. 18)
      • 18. Feng, Y.: ‘Solving for the low-voltage/large-angle power flow solutions by using the holomorphic embedding method’. PhD dissertation, Arizona State University, Tempe, AZ, USA, 2015.
    19. 19)
      • 19. Liu, B., Wei, W., Liu, F.: ‘Locating all real solutions of power flow equations: a convex optimisation-based method’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 22732279.
    20. 20)
      • 20. Chiang, H.-D., Dobson, I., Thomas, R.J., et al: ‘On voltage collapse in electric power systems’, IEEE Trans. Power Syst., 1990, 5, (2), pp. 601611.
    21. 21)
      • 21. Sauer, R.W., Pai, M.A.: ‘Power system steady-state stability and the load-flow Jacobian’, IEEE Trans. Power Syst., 1990, 5, (4), pp. 13741383.
    22. 22)
      • 22. Overbye, T.J., Klump, R.P.: ‘Effective calculation of power system low-voltage solutions’, IEEE Trans. Power Syst., 1996, 11, (1), pp. 7582.
    23. 23)
      • 23. Liu, C.-W., Chang, C.S., Jiang, J.A., et al: ‘Toward a CPFLOW-based algorithm to compute all the type-1 load-flow solutions in electric power systems’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (3), pp. 625630.
    24. 24)
      • 24. Molzahn, D.K., Lesieutre, B.C., Chen, H.: ‘Counter example to a continuation-based algorithm for finding all power flow solutions’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 564565.
    25. 25)
      • 25. Ding, T., Li, C., Yang, Y., et al: ‘Negative reactance impacts on the eigenvalues of the Jacobian matrix in power flow and type-1 low-voltage power-flow solutions’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 34713481.
    26. 26)
      • 26. Molzahn, D.K., Mehta, D., Niemerg, M.: ‘Toward topologically based upper bounds on the number of power flow solutions’. American Control Conf. (ACC), 2016.
    27. 27)
      • 27. Guo, S.X., Salam, F.M.A.: ‘The number of (equilibrium) steady-state solutions of models of power systems’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1994, 41, (9), pp. 584600.
    28. 28)
      • 28. Chen, T., Mehta, D.: ‘On the network topology dependent solution count of the algebraic load flow equations’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 14511460.
    29. 29)
      • 29. Chen, T.H., Chen, M.S., Hwang, K.J., et al: ‘Distribution system power flow analysis – a rigid approach’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 11461152.
    30. 30)
      • 30. Bolognani, S., Zampieri, S.: ‘On the existence and linear approximation of the power flow solution in power distribution networks’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 163172.
    31. 31)
      • 31. Bazrafshan, M., Gatsis, N.: ‘Convergence of the Z-bus method for three-phase distribution load-flow with ZIP loads’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 153165.
    32. 32)
      • 32. Gómez-Quiles, C., Gómez-Expósito, A., Vargas, W.: ‘Computation of maximum loading points via the factored load flow’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 41284134.
    33. 33)
      • 33. Xu, P., Wang, X., Ajjarapu, V.: ‘Continuation power flow with adaptive step-size control via convergence monitor’, IET Gener. Transm. Distrib., 2012, 6, (7), pp. 673679.
    34. 34)
      • 34. Jalali, A., Aldeen, M.: ‘Efficient method to identify saddle-node and limit-induced bifurcation points of power system’, IET Gener. Transm. Distrib., 2018, 12, (17), pp. 40344044.
    35. 35)
      • 35. Evangelopoulos, V.A., Georgilakis, P.S.: ‘Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm’, IET Gener. Transm. Distrib., 2013, 8, (3), pp. 389400.
    36. 36)
      • 36. Chiang, H.D., Jean-Jumeau, R.: ‘Optimal network reconfigurations in distribution systems. II. Solution algorithms and numerical results’, IEEE Trans. Power Deliv., 1990, 5, (3), pp. 15681574.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6290
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6290
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address