Active power filter integrated with distribution transformer based on magnetic potential balance
Active power filter integrated with distribution transformer based on magnetic potential balance
 Author(s): Guiping Cui^{ 1} ; Longfu Luo^{ 1} ; Yong Li^{ 1} ; Chonggan Liang^{ 2} ; Xiaofeng Zhang^{ 1} ; Jiazhu Xu^{ 1} ; Yuxing Liu^{ 1} ; Tao Wang^{ 1} ; Andreas Kubis^{ 3}
 DOI: 10.1049/ietgtd.2018.6267
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
 Author(s): Guiping Cui^{ 1} ; Longfu Luo^{ 1} ; Yong Li^{ 1} ; Chonggan Liang^{ 2} ; Xiaofeng Zhang^{ 1} ; Jiazhu Xu^{ 1} ; Yuxing Liu^{ 1} ; Tao Wang^{ 1} ; Andreas Kubis^{ 3}


View affiliations

Affiliations:
1:
College of Electrical and Information Engineering, Hunan University , Changsha , People's Republic of China ;
2: Electric Power Research Institute of Guangdong Power Grid Co. Ltd. , Guangzhou , People's Republic of China ;
3: Institute of Energy System, Energy Efficiency and Energy Economics, TU Dortmund University , Dortmund , Germany

Affiliations:
1:
College of Electrical and Information Engineering, Hunan University , Changsha , People's Republic of China ;
 Source:
Volume 13, Issue 2,
22
January
2019,
p.
238 – 247
DOI: 10.1049/ietgtd.2018.6267 , Print ISSN 17518687, Online ISSN 17518695
In this study, magnetic potential balance based active power filter integrated with distribution transformer (DTAPF) is proposed for harmonic reduction in distribution systems. Instead of using a stepdown transformer for voltage matching, the active power filter is connected to the taps from the secondary windings of the distribution transformer. The filtering system's integration, operating efficiency as well as reliability are significantly enhanced. The topology of the proposed DTAPF is introduced; the compensation principle, mathematical model as well as the corresponding detection method are described in detail. A nonlinear controller based on passivitybased control (PBC) that ensures global asymptotic stability is proposed to obtain an excellent compensation performance. To verify the feasibility and effectiveness of the presented DTAPF and PBC in harmonic suppression, results from MATLAB simulations and experiments of a downscaled prototype system at laboratory are demonstrated.
Inspec keywords: power harmonic filters; nonlinear control systems; asymptotic stability; transformer windings; power transformers; power distribution control
Other keywords: distribution transformer; active power filter; harmonic suppression; DTAPF; harmonic reduction; magnetic potential balance; nonlinear controller; secondary windings; operating efficiency; compensation principle; passivitybased control; PBC; distribution systems; MATLAB simulations; global asymptotic stability; detection method; mathematical model
Subjects: Power system control; Nonlinear control systems; Transformers and reactors; Stability in control theory; Distribution networks; Control of electric power systems; Power supply quality and harmonics; Other power apparatus and electric machines
References


1)

1. Hagiwara, M., Nishimura, K., Akagi, H.: ‘A mediumvoltage motor drive with a modular multilevel PWM inverter’, IEEE Trans. Ind. Appl., 2010, 130, (7), pp. 1786–1799.


2)

2. Li, H., Zhang, K., Zhao, H., et al: ‘Active power decoupling for highpower singlephase PWM rectifiers’, IEEE Trans. Power Electron., 2012, 28, (3), pp. 1308–1319.


3)

3. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 2553–2580.


4)

4. Khamooshi, R., Namadmalan, A.: ‘Converter utilisation ratio assessment for total harmonic distortion optimisation in cascaded Hbridge multilevel inverters’, IET Power Electron., 2016, 9, (10), pp. 2103–2110.


5)

5. Perez, M.A., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2014, 30, (1), pp. 4–17.


6)

6. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 3119–3130.


7)

7. Chang, G.W., Wang, H.L., Chu, S.Y.: ‘Strategic placement and sizing of passive filters in a power system for controlling voltage distortion’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 1204–1211.


8)

8. ElSaadany, E.F., Salama, M.M.A., Chikhani, A.Y.: ‘Passive filter design for harmonic reactive power compensation in singlephase circuits supplying nonlinear loads’, IEE Proc. Gener. Transm. Distrib., 2000, 147, (6), pp. 373–380.


9)

9. Xiao, Z., Deng, X., Yuan, R., et al: ‘Shunt active power filter with enhanced dynamic performance using novel control strategy’, IET Power Electron., 2014, 7, (12), pp. 3169–3181.


10)

10. Shu, Z., Liu, M., Zhao, L., et al: ‘Predictive harmonic control and its optimal digital implementation for MMCbased active power filter’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 5244–5254.


11)

11. Srianthumrong, S., Akagi, H.: ‘A mediumvoltage transformerless AC/DC power conversion system consisting of a diode rectifier and a shunt hybrid filter’, IEEE Trans. Ind. Appl., 2003, 39, (3), pp. 874–882.


12)

12. Wang, L., Lam, C.S., Wong, M.C., et al: ‘Nonlinear adaptive hysteresis band pulsewidth modulation control for hybrid active power filters to reduce switching loss’, IET Power Electron., 2015, 8, (11), pp. 2156–2167.


13)

13. Corasaniti, V.F., Barbieri, M.B., Arnera, P.L., et al: ‘Hybrid power filter to enhance power quality in a mediumvoltage distribution network’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 2885–2893.


14)

14. Li, Y., Luo, L., Rehtanz, C., et al: ‘Realization of reactive power compensation near the LCCHVDC converter bridges by means of an inductive filtering method’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 3908–3923.


15)

15. Li, Y., Luo, L., Rehtanz, C., et al: ‘An industrial dc power supply system based on an inductive filtering method’, IEEE Trans. Ind. Electron., 2011, 59, (2), pp. 714–722.


16)

16. Li, Y., Yao, F., Cao, Y., et al: ‘An inductively filtered multiwinding rectifier transformer and its application in industrial DC power supply system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 3987–3997.


17)

17. Hu, S., Zhang, Z., Li, Y., et al: ‘A new halfbridge winding compensationbased power conditioning system for electric railway with LQRI’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 5242–5256.


18)

18. Xie, B., Zhang, Z., Hu, S., et al: ‘YN/VD connected balance transformerbased electrical railway negative sequence current compensation system with passive control scheme’, IET Power Electron., 2016, 9, (10), pp. 2044–2051.


19)

19. Zhang, Z., Wu, B., Kang, J., et al: ‘A multipurpose balanced transformer for railway traction applications’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 711–718.


20)

20. Cecati, C., Dell'Aquila, A., Liserre, M., et al: ‘A passivitybased multilevel active rectifier with adaptive compensation for traction applications’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 1404–1413.


21)

21. Lee, T.S.: ‘Lagrangian modeling and passivitybased control of threephase AC/DC voltagesource converters’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 892–902.


22)

22. Lei, E., Yin, X., Zhang, Z., et al: ‘An improved transformer winding tap injection Dstatcom topology for mediumvoltage reactive power compensation’, IEEE Trans. Power Electron., 2017, 33, (3), pp. 2113–2126.


23)

23. Sandoval, G., Miranda, H., EspinosaPeRez, G., et al: ‘Passivitybased control of an asymmetric ninelevel inverter for harmonic current mitigation’, IET Power Electron., 2012, 5, (2), pp. 237–247.


24)

24. Xu, R., Yu, Y., Yang, R., et al: ‘A novel control method for transformerless Hbridge cascaded STATCOM with star configuration’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 1189–1202.


25)

25. Cui, G.P., Luo, L.F., Li, Y., et al: ‘Passivitybased control of multifunctional singlephase capacitivecoupling gridconnected inverter for renewable energy integration and reactive power compensation’. 13th IEEE Conf. on Industrial Electronics and Application(ICIEA), Wuhan, China, June 2018, pp. 1785–1790.


26)

26. Komurcugil, H.: ‘Improved passivitybased control method and its robustness analysis for singlephase uninterruptible power supply inverters’, Power Electron. Lett., 2015, 8, (8), pp. 1558–1570.


1)