Active power filter integrated with distribution transformer based on magnetic potential balance

Active power filter integrated with distribution transformer based on magnetic potential balance

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, magnetic potential balance based active power filter integrated with distribution transformer (DT-APF) is proposed for harmonic reduction in distribution systems. Instead of using a step-down transformer for voltage matching, the active power filter is connected to the taps from the secondary windings of the distribution transformer. The filtering system's integration, operating efficiency as well as reliability are significantly enhanced. The topology of the proposed DT-APF is introduced; the compensation principle, mathematical model as well as the corresponding detection method are described in detail. A non-linear controller based on passivity-based control (PBC) that ensures global asymptotic stability is proposed to obtain an excellent compensation performance. To verify the feasibility and effectiveness of the presented DT-APF and PBC in harmonic suppression, results from MATLAB simulations and experiments of a down-scaled prototype system at laboratory are demonstrated.


    1. 1)
      • 1. Hagiwara, M., Nishimura, K., Akagi, H.: ‘A medium-voltage motor drive with a modular multilevel PWM inverter’, IEEE Trans. Ind. Appl., 2010, 130, (7), pp. 17861799.
    2. 2)
      • 2. Li, H., Zhang, K., Zhao, H., et al: ‘Active power decoupling for high-power single-phase PWM rectifiers’, IEEE Trans. Power Electron., 2012, 28, (3), pp. 13081319.
    3. 3)
      • 3. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    4. 4)
      • 4. Khamooshi, R., Namadmalan, A.: ‘Converter utilisation ratio assessment for total harmonic distortion optimisation in cascaded H-bridge multi-level inverters’, IET Power Electron., 2016, 9, (10), pp. 21032110.
    5. 5)
      • 5. Perez, M.A., Bernet, S., Rodriguez, J., et al: ‘Circuit topologies, modeling, control schemes, and applications of modular multilevel converters’, IEEE Trans. Power Electron., 2014, 30, (1), pp. 417.
    6. 6)
      • 6. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    7. 7)
      • 7. Chang, G.W., Wang, H.L., Chu, S.Y.: ‘Strategic placement and sizing of passive filters in a power system for controlling voltage distortion’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 12041211.
    8. 8)
      • 8. El-Saadany, E.F., Salama, M.M.A., Chikhani, A.Y.: ‘Passive filter design for harmonic reactive power compensation in single-phase circuits supplying nonlinear loads’, IEE Proc. Gener. Transm. Distrib., 2000, 147, (6), pp. 373380.
    9. 9)
      • 9. Xiao, Z., Deng, X., Yuan, R., et al: ‘Shunt active power filter with enhanced dynamic performance using novel control strategy’, IET Power Electron., 2014, 7, (12), pp. 31693181.
    10. 10)
      • 10. Shu, Z., Liu, M., Zhao, L., et al: ‘Predictive harmonic control and its optimal digital implementation for MMC-based active power filter’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 52445254.
    11. 11)
      • 11. Srianthumrong, S., Akagi, H.: ‘A medium-voltage transformerless AC/DC power conversion system consisting of a diode rectifier and a shunt hybrid filter’, IEEE Trans. Ind. Appl., 2003, 39, (3), pp. 874882.
    12. 12)
      • 12. Wang, L., Lam, C.S., Wong, M.C., et al: ‘Non-linear adaptive hysteresis band pulse-width modulation control for hybrid active power filters to reduce switching loss’, IET Power Electron., 2015, 8, (11), pp. 21562167.
    13. 13)
      • 13. Corasaniti, V.F., Barbieri, M.B., Arnera, P.L., et al: ‘Hybrid power filter to enhance power quality in a medium-voltage distribution network’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28852893.
    14. 14)
      • 14. Li, Y., Luo, L., Rehtanz, C., et al: ‘Realization of reactive power compensation near the LCC-HVDC converter bridges by means of an inductive filtering method’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 39083923.
    15. 15)
      • 15. Li, Y., Luo, L., Rehtanz, C., et al: ‘An industrial dc power supply system based on an inductive filtering method’, IEEE Trans. Ind. Electron., 2011, 59, (2), pp. 714722.
    16. 16)
      • 16. Li, Y., Yao, F., Cao, Y., et al: ‘An inductively filtered multiwinding rectifier transformer and its application in industrial DC power supply system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 39873997.
    17. 17)
      • 17. Hu, S., Zhang, Z., Li, Y., et al: ‘A new half-bridge winding compensation-based power conditioning system for electric railway with LQRI’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 52425256.
    18. 18)
      • 18. Xie, B., Zhang, Z., Hu, S., et al: ‘YN/VD connected balance transformer-based electrical railway negative sequence current compensation system with passive control scheme’, IET Power Electron., 2016, 9, (10), pp. 20442051.
    19. 19)
      • 19. Zhang, Z., Wu, B., Kang, J., et al: ‘A multi-purpose balanced transformer for railway traction applications’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 711718.
    20. 20)
      • 20. Cecati, C., Dell'Aquila, A., Liserre, M., et al: ‘A passivity-based multilevel active rectifier with adaptive compensation for traction applications’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14041413.
    21. 21)
      • 21. Lee, T.S.: ‘Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 892902.
    22. 22)
      • 22. Lei, E., Yin, X., Zhang, Z., et al: ‘An improved transformer winding tap injection D-statcom topology for medium-voltage reactive power compensation’, IEEE Trans. Power Electron., 2017, 33, (3), pp. 21132126.
    23. 23)
      • 23. Sandoval, G., Miranda, H., Espinosa-Pe-Rez, G., et al: ‘Passivity-based control of an asymmetric nine-level inverter for harmonic current mitigation’, IET Power Electron., 2012, 5, (2), pp. 237247.
    24. 24)
      • 24. Xu, R., Yu, Y., Yang, R., et al: ‘A novel control method for transformerless H-bridge cascaded STATCOM with star configuration’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 11891202.
    25. 25)
      • 25. Cui, G.P., Luo, L.F., Li, Y., et al: ‘Passivity-based control of multi-functional single-phase capacitive-coupling grid-connected inverter for renewable energy integration and reactive power compensation’. 13th IEEE Conf. on Industrial Electronics and Application(ICIEA), Wuhan, China, June 2018, pp. 17851790.
    26. 26)
      • 26. Komurcugil, H.: ‘Improved passivity-based control method and its robustness analysis for single-phase uninterruptible power supply inverters’, Power Electron. Lett., 2015, 8, (8), pp. 15581570.

Related content

This is a required field
Please enter a valid email address