http://iet.metastore.ingenta.com
1887

Parameters affecting the arcing time of HVDC circuit breakers using black box arc model

Parameters affecting the arcing time of HVDC circuit breakers using black box arc model

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Arc interruption of high voltage direct current (HVDC) circuit breakers (CBs) is one of the main challenging factors for using HVDC grids. To evaluate the arc interrupting capability in HVDC CBs, black box arc models are used to represent the nonlinear arc conductance depending on Cassie and Mayr dynamic arc equations. Extensive simulation studies are carried out to investigate the effect of controlled and uncontrolled parameters on the CB arcing time. A real line represents a part of 500 kV electrical connection systems between Egypt and the Kingdom of Saudi Arabia is simulated to be a faulty load. It is found that the arcing time of the HVDC CB can be reduced by increasing the value of cooling power coefficient (p) and decreasing the value of arc time constant (τ). It is also deduced that the arcing time is reduced by the increase of the commutation capacitance value (C) and decreasing the commutation inductance (L) value and vice versa. Moreover, it is concluded that the arcing time is greatly affected by the fault location and the fault arc resistance () according to fault conditions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6264
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6264
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address