http://iet.metastore.ingenta.com
1887

Mitigation of sub-synchronous control interaction of a power system with DFIG-based wind farm under multi-operating points

Mitigation of sub-synchronous control interaction of a power system with DFIG-based wind farm under multi-operating points

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a probabilistic design of a power system stabiliser (PSS) for doubly-fed induction generator (DFIG) converter and investigates its potential capability in mitigating the sub-synchronous control interaction (SSCI) at multi-operating points. The aim is to improve the probabilistic sub-synchronous stability of the system with wind farm penetration. In this study, participation factors are obtained to identify the SSCI strong-related state variables and major control loops, which are used for the preliminary siting of the DFIG-PSS. Probabilistic sensitivity indices are then employed for accurate positioning of the PSS, selecting the input control signal and optimising the PSS parameters. The effectiveness of the proposed approach is verified on a modified two-area power system. The results show that the designed DFIG-PSS is capable of improving probabilistic small-signal sub-synchronous stability of the system at multi-operating points and its performance is better than a DFIG-PSS designed with the general small-signal method.

References

    1. 1)
      • 1. Cheng, Y., Sahni, M., Muthumuni, D., et al: ‘Reactance scan crossover-based approach for investigating SSCI concerns for DFIG-based wind turbines’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 742751.
    2. 2)
      • 2. Nath, R., Grande-Moran, C.: ‘Study of sub-synchronous control interaction due to the interconnection of wind farms to a series compensated transmission system’. Proc. IEEE Power & Energy Society (PES) Transmission and Distribution Conf. Exposition (T&D), Orlando, FL, USA, May 2012, pp. 16.
    3. 3)
      • 3. Fan, L., Kavasseri, R., Miao, Z., et al: ‘Modeling of DFIG-based wind farms for SSR analysis’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 20732082.
    4. 4)
      • 4. Fan, L., Zhu, C., Miao, Z., et al: ‘Modal analysis of a DFIG-based wind farm interfaced with a series compensated network’, IEEE Trans. Energy Convers., 2011, 26, (4), pp. 10101020.
    5. 5)
      • 5. Suriyaarachchi, D.H.R., Annakkage, U.D., Karawita, C., et al: ‘A procedure to study sub-synchronous interactions in wind integrated power systems’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 377384.
    6. 6)
      • 6. Fan, L., Miao, Z.: ‘Mitigating SSR using DFIG-based wind generation’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 349358.
    7. 7)
      • 7. Varma, R.K., Auddy, S., Semsedini, Y.: ‘Mitigation of sub-synchronous resonance in a series-compensated wind farm using FACTS controllers’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 14451454.
    8. 8)
      • 8. Bak-Jensen, B., El-Moursi, M.S., Abdel-Rahman, M.H.: ‘Novel STATCOM controller for mitigating SSR and damping power system oscillations in a series compensated wind parks’, IEEE Trans. Power Electr., 2010, 25, (2), pp. 429441.
    9. 9)
      • 9. Su, J.L., Shi, L.B., Yao, L.Z., et al: ‘Sub-synchronous resonance analysis of grid-connected DFIG-based wind farms’. Proc. IEEE Power System Technology, Chengdu, China, October 2014, pp. 28122818.
    10. 10)
      • 10. Zhu, C., Fan, L., Hu, M.: ‘Control and analysis of DFIG-based wind turbines in a series compensated network for SSR damping’. Proc. IEEE Power and Energy Society General Meeting, Providence, RI, USA, July 2010, pp. 16.
    11. 11)
      • 11. Zhao, B., Li, H., Wang, M.Y., et al: ‘An active power control strategy for a DFIG-based wind farm to depress the subsynchronous resonance of a power system’, Int. J. Electr Power. Energy Syst., 2015, 69, pp. 327334.
    12. 12)
      • 12. Mohammadpour, H.A., Santi, E.: ‘SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 388399.
    13. 13)
      • 13. Mokhtari, M., Khazaei, J., Nazarpour, D.: ‘Sub-synchronous resonance damping via doubly fed induction generator’, Int. J. Electr. Power Energy Syst., 2013, 53, (4), pp. 876883.
    14. 14)
      • 14. Karaagac, U., Faried, S.O., Mahseredjian, J., et al: ‘Coordinated control of wind energy conversion systems for mitigating subsynchronous interaction in DFIG-based wind farms’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 24402449.
    15. 15)
      • 15. Ostadi, A., Yazdani, A., Varma, R.K.: ‘Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 15041514.
    16. 16)
      • 16. Wang, L., Peng, J., You, Y., et al: ‘SSCI performance of DFIG with direct controller’, IET Gener. Transm. Distrib., 2017, 11, (10), pp. 26972702.
    17. 17)
      • 17. Leon, A.E., Solsona, J.: ‘Sub-synchronous interaction damping control for DFIG wind turbines’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 419428.
    18. 18)
      • 18. Mohammadpour, H.A., Ghaderi, A., Mohammadpour, H., et al: ‘SSR damping in wind farms using observed-state feedback control of DFIG converters’, Electr. Power Syst. Res., 2015, 123, pp. 5766.
    19. 19)
      • 19. Irwin, G.D., Jindal, A.K., Isaacs, A.L.: ‘Sub-synchronous control interactions between type 3 wind turbines and series compensated ac transmission systems’. Proc. IEEE Power and Energy Society General Meeting, San Diego, CA, USA, July 2011, pp. 16.
    20. 20)
      • 20. Faried, S.O., Unal, I., Rai, D., et al: ‘Utilizing DFIG-based wind farms for damping subsynchronous resonance in nearby turbine-generators’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 452459.
    21. 21)
      • 21. Bian, X.Y., Huang, X.X., Wong, K.C., et al: ‘Improvement on probabilistic small-signal stability of power system with large-scale wind farm integration’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 482488.
    22. 22)
      • 22. Bian, X.Y.: ‘Probabilistic robust damping controller designs for FACTS devices and PSS’. PhD dissertation, The Hong Kong Polytechnic University, 2006.
    23. 23)
      • 23. Bian, X.Y., Geng, Y., Lo, K.L., et al: ‘Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of power system with wind farm integration’, IEEE Trans. Power Syst, 2016, 31, (3), pp. 23712382.
    24. 24)
      • 24. Kendall, M.G., Stuart, A.: ‘The advanced theory of statistics’, vol. I (Hafner, New York, 1977), pp. 8488.
    25. 25)
      • 25. Chung, C.Y., Wang, K.W., Tse, C.T., et al: ‘Power-system stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs)’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 688693.
    26. 26)
      • 26. Chung, C.Y., Wang, K.W., Tse, C.T., et al: ‘Probabilistic eigenvalue sensitivity analysis and PSS design in multi-machine systems’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 14391445.
    27. 27)
      • 27. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994), pp. 130157.
    28. 28)
      • 28. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (John Hopkins University Press, Baltimore, MD, USA, 1996, 3rd edn.), Section: 5.1–5.2.
    29. 29)
      • 29. Zhou, E.Z., Chen, S.S., Ni, Y.X., et al: ‘Modified selective modal analysis method and its application in the analysis of power system dynamics’. IEEE Trans. Power Syst., 1991, 6, (3), pp. 11891195.
    30. 30)
      • 30. Fang, W., Wei, P., Du, Z.: ‘Reduced-order method for computing critical eigen-values in ultra large-scale power systems’. IET Gener. Transm. Distrib., 2010, 4, (7), pp. 836845.
    31. 31)
      • 31. Lee, B., Song, H., Kwon, S.H., et al: ‘Calculation of rightmost eigenvalues in power systems using the Block Arnoldi Chebyshev method (BACM)’, IET Gener. Transm. Distrib., 2003, 150, (1), pp. 2327.
    32. 32)
      • 32. Tsai, S.H., Lee, C.Y., Wu, Y.K.: ‘Efficient calculation of critical eigenvalues in large power systems using the real variant of the Jacobi-Davidson QR method’, IET Gener. Transm. Distrib., 2010, 4, (4), pp. 467478.
    33. 33)
      • 33. Magaji, N., Mustafa, M.W.: ‘Optimal location and signal selection of UPFC device for damping oscillation’, Int. J. Electr. Power. Energy Syst., 2011, 33, (4), pp. 10311042.
    34. 34)
      • 34. Mohammadpour, H.A., Islam, M., Santi, E., et al: ‘SSR damping in fixed-speed wind farms using series FACTS controllers’, IEEE Trans. Power Deliv., 2015, 31, (1), pp. 7686.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6258
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6258
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address