Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data

A fault location (FL) identification method for smart distribution network is presented and validated using a digital real-time simulator (DRTS). The method can accurately identify the FL in a distribution network in the presence of distributed generation (DG). This method is based on state estimation (SE) algorithm which uses real-time data from simulated phasor measurement units (PMUs), placed in the distribution network. SE needs the fault currents of the generators and voltage measurements of an optimal number of nodes to perform the FL algorithm. The method was validated using the IEEE 37 node test feeder with DGs. PMUs are placed on the real-time model of the system. The real-time model was implemented on a DRTS which streams phasor data over the Internet using C37.118 protocol. OpenPDC is used to collect real-time PMU data coming from the DRTS. Microsoft SQL is used as a database management server to store data coming from OpenPDC. In the last step of the FL process, data stored in OpenPDC is fed into a FL identification algorithm to locate the fault. Both balanced and unbalanced fault types are applied to different nodes and an accurate estimation of the FL (over 90% of the cases) is achieved.

References

    1. 1)
      • 25. Guillen, J.D.: ‘Fault location identification in smart distribution networks with distributed generation’, MSc thesis, Department of Electrical Engineering, Florida State University, FL, 2015.
    2. 2)
      • 26. Pak, L., Faruque, M., Nie, X., et al: ‘A versatile cluster-based real-time digital simulator for power engineering research’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 455465.
    3. 3)
      • 14. Krishnathevar, R., Ngu, E.E.: ‘Generalized impedance-based fault location for distribution systems’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 449451.
    4. 4)
      • 19. Brahma, S.: ‘Fault location in power distribution system with penetration of distributed generation’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 15451553.
    5. 5)
      • 17. Buigues, G., Valverde, V., Zamora, I., et al: ‘Signal injection techniques for fault location in distribution networks’. Proc. Int. Renewable Energies and Power Quality, Santiago de Compostela, Spain, March 2012.
    6. 6)
      • 29. Xue, J., Yin, Z., Wu, B., et al: ‘Design of PV array model based on EMTDC/PSCAD’. Proc. Asia-Pacific Power Energy Eng., Wuhan, 2009, pp. 15.
    7. 7)
      • 31. Schauder, C., Mehta, H.: ‘Vector analysis and control of advanced static VAR compensators’, Proc. IEEE Gener., Transm. Distrib., 1993, 140, (4), pp. 299306.
    8. 8)
      • 12. Nunes, J., Bretas, A.: ‘An extended fault location formulation for unbalanced distribution feeders with distributed generation’. Proc. Int. Modern Electric Power Systems (MEPS), Wroclaw, 2010, pp. 16.
    9. 9)
      • 24. Haughton, D., Heydt, G.: ‘A linear state estimation formulation for smart distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11871195.
    10. 10)
      • 27. IEEE PES Distribution Systems Analysis Subcommittee Radial Test Feeder. Available at http://ewh.ieee.org/soc/pes/dsacom/testfeeders.
    11. 11)
      • 20. Meier, A.V., Culler, D., McEachern, A., et al: ‘Microsynchrophasors for distribution systems’. Proc. IEEE Power Energy Society Innovative Smart Grid Technology, Washington, DC, 2014, pp. 15.
    12. 12)
      • 21. Pignati, M., Zanni, L., Romano, P., et al: ‘Fault detection and faulted line identification in active distribution networks using synchrophasors-based real-time state estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 381392.
    13. 13)
      • 4. ABB.: ‘Grid automation, recloser protection and control rer615’, product guide, 2015.
    14. 14)
      • 22. Zhu, C., Chen, Q., Gao, Z., et al: ‘A new fault location method for distribution networks using multi-source information’. Proc. PES Asia-Pacific Power and Energy Engineering, Brisbane, Australia, 2015, pp. 15.
    15. 15)
      • 2. Anderson, P.M.: ‘Power system protection’ (McGraw-Hill, New York, 1999).
    16. 16)
      • 3. NREL/TP-550-46698.: ‘Understanding fault characteristics of inverter-based distributed energy resources’, National Renewable Energy Laboratory, Tech. Rep., January 2010.
    17. 17)
      • 5. Devabhaktuni, V., Depuru, S., Wang, L.: ‘Smart meters for power grid: challenges, issues, advantages, and status’, Renew. Sust. Energy Rev., 2011, 15, (6), pp. 27362742.
    18. 18)
      • 33. Skaloumpakas, K., et al: ‘Response of low voltage networks with high penetration of photovoltaic systems to transmission network faults’. Proc. Renewable Power Generation Conf., Naples, 2014, pp. 16.
    19. 19)
      • 8. Florez, J., Melendez, J., Caicedo, G.: ‘Comparison of impedance based fault location methods for power distribution systems’, Electr. Power Syst. Res., 2008, 78, pp. 657666.
    20. 20)
      • 18. Lotfifard, S., Kezunovic, M., Mousavi, M.J.: ‘Voltage sag data utilization for distribution fault location’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12391246.
    21. 21)
      • 28. Dufour, C., Mahseredjian, J., Bélanger, J.: ‘A combined state-space nodal method for the simulation of power system transients’, IEEE Trans. Power Deliv, 2011, 26, (2), pp. 928935.
    22. 22)
      • 1. Distribution line protection practices industry survey analysis’, IEEE Trans. Power Appl. Syst., 1983, PAS-102, (10), pp. 32793287.
    23. 23)
      • 23. Cordova, J., Faruque, M.: ‘Fault location identification in smart distribution networks with distributed generation’. Proc. North American Power Symp., Charlotte, NC, 2015, pp. 17.
    24. 24)
      • 6. Girgis, A., Fallon, C., Lubkeman, D.: ‘A fault location technique for rural distribution feeders’, IEEE Trans. Ind. Appl., 1993, 29, (6), pp. 11701175.
    25. 25)
      • 15. Ren, J., Venkata, S., Sortomme, E.: ‘An accurate synchrophasor based fault location method for emerging distribution systems’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 297298.
    26. 26)
      • 9. Choi, M., Lee, S., Lee, D., et al: ‘A new fault location algorithm using direct circuit analysis for distribution systems’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 3541.
    27. 27)
      • 16. Li, Y., Gao, H., Du, Q., et al: ‘A review of single-phase-to-ground fault location methods in distribution networks’. Proc. 4th Intl. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, China, July 2011, pp. 938943.
    28. 28)
      • 30. Hariri, A., Faruque, M.: ‘A hybrid simulation tool for the study of PV integration impacts on distribution networks’, IEEE Trans. Sust. Energy, 2017, 8, (2), pp. 648657.
    29. 29)
      • 32. Trindade, F., Freitas, W.: ‘Low voltage zones to support fault location in distribution systems with smart meters’, IEEE Trans. Smart Grids, 2016, 1, (99), pp. 110.
    30. 30)
      • 10. Choi, M., Lee, S., Lim, S., et al: ‘A direct three-phase circuit analysis-based fault location for line-to-line fault’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 25412547.
    31. 31)
      • 11. Bretas, A., Salim, R.: ‘Fault location in unbalanced DG systems using the positive sequence apparent impedance’. Proc. IEEE PES Transmission and Distribution Conf. Latin America, Caracas, 2006, pp. 16.
    32. 32)
      • 7. Jacques, A., Srinivasan, K.: ‘A new fault location algorithm for radial transmission lines with loads’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16761682.
    33. 33)
      • 13. Salim, R., Salim, K., Bretas, A.: ‘Further improvements on impedance-based fault location for power distribution systems’, IET Gener., Transm. Distrib., 2011, 5, (4), pp. 467478.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6245
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6245
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address