Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data

Validation of a PMU-based fault location identification method for smart distribution network with photovoltaics using real-time data

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A fault location (FL) identification method for smart distribution network is presented and validated using a digital real-time simulator (DRTS). The method can accurately identify the FL in a distribution network in the presence of distributed generation (DG). This method is based on state estimation (SE) algorithm which uses real-time data from simulated phasor measurement units (PMUs), placed in the distribution network. SE needs the fault currents of the generators and voltage measurements of an optimal number of nodes to perform the FL algorithm. The method was validated using the IEEE 37 node test feeder with DGs. PMUs are placed on the real-time model of the system. The real-time model was implemented on a DRTS which streams phasor data over the Internet using C37.118 protocol. OpenPDC is used to collect real-time PMU data coming from the DRTS. Microsoft SQL is used as a database management server to store data coming from OpenPDC. In the last step of the FL process, data stored in OpenPDC is fed into a FL identification algorithm to locate the fault. Both balanced and unbalanced fault types are applied to different nodes and an accurate estimation of the FL (over 90% of the cases) is achieved.


    1. 1)
      • 1. Distribution line protection practices industry survey analysis’, IEEE Trans. Power Appl. Syst., 1983, PAS-102, (10), pp. 32793287.
    2. 2)
      • 2. Anderson, P.M.: ‘Power system protection’ (McGraw-Hill, New York, 1999).
    3. 3)
      • 3. NREL/TP-550-46698.: ‘Understanding fault characteristics of inverter-based distributed energy resources’, National Renewable Energy Laboratory, Tech. Rep., January 2010.
    4. 4)
      • 4. ABB.: ‘Grid automation, recloser protection and control rer615’, product guide, 2015.
    5. 5)
      • 5. Devabhaktuni, V., Depuru, S., Wang, L.: ‘Smart meters for power grid: challenges, issues, advantages, and status’, Renew. Sust. Energy Rev., 2011, 15, (6), pp. 27362742.
    6. 6)
      • 6. Girgis, A., Fallon, C., Lubkeman, D.: ‘A fault location technique for rural distribution feeders’, IEEE Trans. Ind. Appl., 1993, 29, (6), pp. 11701175.
    7. 7)
      • 7. Jacques, A., Srinivasan, K.: ‘A new fault location algorithm for radial transmission lines with loads’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 16761682.
    8. 8)
      • 8. Florez, J., Melendez, J., Caicedo, G.: ‘Comparison of impedance based fault location methods for power distribution systems’, Electr. Power Syst. Res., 2008, 78, pp. 657666.
    9. 9)
      • 9. Choi, M., Lee, S., Lee, D., et al: ‘A new fault location algorithm using direct circuit analysis for distribution systems’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 3541.
    10. 10)
      • 10. Choi, M., Lee, S., Lim, S., et al: ‘A direct three-phase circuit analysis-based fault location for line-to-line fault’, IEEE Trans. Power Deliv., 2007, 22, (4), pp. 25412547.
    11. 11)
      • 11. Bretas, A., Salim, R.: ‘Fault location in unbalanced DG systems using the positive sequence apparent impedance’. Proc. IEEE PES Transmission and Distribution Conf. Latin America, Caracas, 2006, pp. 16.
    12. 12)
      • 12. Nunes, J., Bretas, A.: ‘An extended fault location formulation for unbalanced distribution feeders with distributed generation’. Proc. Int. Modern Electric Power Systems (MEPS), Wroclaw, 2010, pp. 16.
    13. 13)
      • 13. Salim, R., Salim, K., Bretas, A.: ‘Further improvements on impedance-based fault location for power distribution systems’, IET Gener., Transm. Distrib., 2011, 5, (4), pp. 467478.
    14. 14)
      • 14. Krishnathevar, R., Ngu, E.E.: ‘Generalized impedance-based fault location for distribution systems’, IEEE Trans. Power Deliv., 2012, 27, (1), pp. 449451.
    15. 15)
      • 15. Ren, J., Venkata, S., Sortomme, E.: ‘An accurate synchrophasor based fault location method for emerging distribution systems’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 297298.
    16. 16)
      • 16. Li, Y., Gao, H., Du, Q., et al: ‘A review of single-phase-to-ground fault location methods in distribution networks’. Proc. 4th Intl. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, Shandong, China, July 2011, pp. 938943.
    17. 17)
      • 17. Buigues, G., Valverde, V., Zamora, I., et al: ‘Signal injection techniques for fault location in distribution networks’. Proc. Int. Renewable Energies and Power Quality, Santiago de Compostela, Spain, March 2012.
    18. 18)
      • 18. Lotfifard, S., Kezunovic, M., Mousavi, M.J.: ‘Voltage sag data utilization for distribution fault location’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12391246.
    19. 19)
      • 19. Brahma, S.: ‘Fault location in power distribution system with penetration of distributed generation’, IEEE Trans. Power Deliv., 2011, 26, (3), pp. 15451553.
    20. 20)
      • 20. Meier, A.V., Culler, D., McEachern, A., et al: ‘Microsynchrophasors for distribution systems’. Proc. IEEE Power Energy Society Innovative Smart Grid Technology, Washington, DC, 2014, pp. 15.
    21. 21)
      • 21. Pignati, M., Zanni, L., Romano, P., et al: ‘Fault detection and faulted line identification in active distribution networks using synchrophasors-based real-time state estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 381392.
    22. 22)
      • 22. Zhu, C., Chen, Q., Gao, Z., et al: ‘A new fault location method for distribution networks using multi-source information’. Proc. PES Asia-Pacific Power and Energy Engineering, Brisbane, Australia, 2015, pp. 15.
    23. 23)
      • 23. Cordova, J., Faruque, M.: ‘Fault location identification in smart distribution networks with distributed generation’. Proc. North American Power Symp., Charlotte, NC, 2015, pp. 17.
    24. 24)
      • 24. Haughton, D., Heydt, G.: ‘A linear state estimation formulation for smart distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 11871195.
    25. 25)
      • 25. Guillen, J.D.: ‘Fault location identification in smart distribution networks with distributed generation’, MSc thesis, Department of Electrical Engineering, Florida State University, FL, 2015.
    26. 26)
      • 26. Pak, L., Faruque, M., Nie, X., et al: ‘A versatile cluster-based real-time digital simulator for power engineering research’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 455465.
    27. 27)
      • 27. IEEE PES Distribution Systems Analysis Subcommittee Radial Test Feeder. Available at
    28. 28)
      • 28. Dufour, C., Mahseredjian, J., Bélanger, J.: ‘A combined state-space nodal method for the simulation of power system transients’, IEEE Trans. Power Deliv, 2011, 26, (2), pp. 928935.
    29. 29)
      • 29. Xue, J., Yin, Z., Wu, B., et al: ‘Design of PV array model based on EMTDC/PSCAD’. Proc. Asia-Pacific Power Energy Eng., Wuhan, 2009, pp. 15.
    30. 30)
      • 30. Hariri, A., Faruque, M.: ‘A hybrid simulation tool for the study of PV integration impacts on distribution networks’, IEEE Trans. Sust. Energy, 2017, 8, (2), pp. 648657.
    31. 31)
      • 31. Schauder, C., Mehta, H.: ‘Vector analysis and control of advanced static VAR compensators’, Proc. IEEE Gener., Transm. Distrib., 1993, 140, (4), pp. 299306.
    32. 32)
      • 32. Trindade, F., Freitas, W.: ‘Low voltage zones to support fault location in distribution systems with smart meters’, IEEE Trans. Smart Grids, 2016, 1, (99), pp. 110.
    33. 33)
      • 33. Skaloumpakas, K., et al: ‘Response of low voltage networks with high penetration of photovoltaic systems to transmission network faults’. Proc. Renewable Power Generation Conf., Naples, 2014, pp. 16.

Related content

This is a required field
Please enter a valid email address