http://iet.metastore.ingenta.com
1887

Graph theory based topology design and energy routing control of the energy internet

Graph theory based topology design and energy routing control of the energy internet

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a core of energy internet, the energy router (ER) controlled by information flows can better realise the large scale utilisation of renewable energy. In order to build a cost-effective energy internet, a modified minimum spanning tree algorithm is proposed to optimise the cable layout among ERs, i.e. topology design. Considering the real-time and the asynchrony of power transmission in the above topology determined energy internet, an energy routing control method based on Dijkstra algorithm is put forward for source-and-load pairs to find a no-congestion minimum loss path. Besides, the loss allocation and congestion managements are realised at the same time. Finally, the simulation results prove the feasibility and effectiveness of proposed optimisation algorithms.

References

    1. 1)
      • 1. Zhang, H., Li, Y., Gao, D.W., et al: ‘Distributed optimal energy management for energy internet’, IEEE Trans. Ind. Inf., 2017, 13, (6), pp. 30813097.
    2. 2)
      • 2. Wang, K., Yu, J., Yu, Y., et al: ‘A survey on energy internet: architecture, approach, and emerging technologies’, IEEE Syst. J., 2017, PP, (99), pp. 114.
    3. 3)
      • 3. Wang, K., Li, H., Feng, Y., et al: ‘Big data analytics for system stability evaluation strategy in the energy internet’, IEEE Trans. Ind. Inf., 2017, 13, (4), pp. 19691978.
    4. 4)
      • 4. Zhong, W., Yu, R., Xie, S., et al: ‘Software defined networking for flexible and green energy internet’, IEEE Commun. Mag., 2016, 54, (12), pp. 6875.
    5. 5)
      • 5. Huang, A.Q., Crow, M.L., Heydt, G.T., et al: ‘The future renewable electric energy delivery and management (FREEDM) system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
    6. 6)
      • 6. Hou, P., Hu, W., Chen, Z.: ‘Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method’, IET Renew. Power Gener., 2016, 10, (5), pp. 694702.
    7. 7)
      • 7. Hou, P., Hu, W., Chen, C., et al: ‘Optimisation of offshore wind farm cable connection layout considering levelised production cost using dynamic minimum spanning tree algorithm’, IET Renew. Power Gener., 2016, 10, (2), pp. 175183.
    8. 8)
      • 8. Dutta, S., Overbye, T.J.: ‘Optimal wind farm collector system topology design considering total trenching length’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 339348.
    9. 9)
      • 9. Huang, L.L., Chen, N., Zhang, H., et al: ‘Optimization of large-scale offshore wind farm electrical collection systems based on improved FCM’. Int. Conf. on Sustainable Power Generation and Supply, Hangzhou, China, September 2012, pp. 16.
    10. 10)
      • 10. Wang, R., Wu, J., Qian, Z., et al: ‘A graph theory based energy routing algorithm in energy local area network (e-LAN)’, IEEE Trans. Ind. Inf., 2017, 13, (6), pp. 32753285.
    11. 11)
      • 11. Yi, P., Tang, Y., Hong, Y., et al: ‘Renewable energy transmission through multiple routes in a mobile electrical grid’. IEEE Conf. Innovative Smart Grid Technologies, Washington, DC, USA, February 2014, pp. 15.
    12. 12)
      • 12. Rodriguez-Puente, R., Lazo-Cortes, M.S.: ‘Graph-reduction algorithm for finding shortest path in geographic information systems’, IEEE Latin Am. Trans., 2012, 10, (6), pp. 22012208.
    13. 13)
      • 13. Brass, P., Vigan, I., Xu, N.: ‘Shortest path planning for a tethered robot’, Comput. Geom., Theory Appl., 2015, 48, (9), pp. 732742.
    14. 14)
      • 14. Kumari, S.M., Geethanjali, N.: ‘A survey on shortest path routing algorithms for public transport travel’, Glob. J. Comput. Sci. Technol., 2010, 9, (5), pp. 7376.
    15. 15)
      • 15. Cao, Z., Guo, H, Zhang, J, et al: ‘Finding the shortest path in stochastic vehicle routing: a cardinality minimization approach’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (6), pp. 16881702.
    16. 16)
      • 16. Cota-Ruiz, J., Rivas-Perea, P., Sifuentes, E., et al: ‘A recursive shortest path routing algorithm with application for wireless sensor network localization’, IEEE Sens. J., 2016, 16, (11), pp. 46314637.
    17. 17)
      • 17. Ding, Q., Abur, A.: ‘Transmission loss allocation in a multiple-transaction framework’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 214220.
    18. 18)
      • 18. Abe, R., Taoka, H., Mcquilkin, D.: ‘Digital grid: communicative electrical grids of the future’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 399410.
    19. 19)
      • 19. Takahashi, R., Tashiro, K., Hikihara, T.: ‘Router for power packet distribution network: design and experimental verification’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 618626.
    20. 20)
      • 20. Guo, H., Wang, F., Luo, J., et al: ‘Review of energy routers applied for the energy internet integrating renewable energy’. IEEE Conf. Power Electronics and Motion Control, Hefei, China, May 2016, pp. 19972003.
    21. 21)
      • 21. Jie, Y., Wu, Z., Bhattacharya, S.: ‘Power dispatch strategy in microgrid integrated with solid state transformer’. IEEE Power and Energy Society General Meeting, Vancouver, BC, Canada, July 2013, pp. 15.
    22. 22)
      • 22. She, X., Huang, A.Q., Lukic, S., et al: ‘On integration of solid-state transformer with zonal DC microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 975985.
    23. 23)
      • 23. Yu, X., She, X., Ni, X., et al: ‘System integration and hierarchical power management strategy for a solid-state transformer interfaced microgrid system’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 44144425.
    24. 24)
      • 24. Zhang, J.D., Feng, Y.J., Shi, F.F., et al: ‘Vehicle routing in urban areas based on the oil consumption weight – Dijkstra algorithm’, IET Intell. Transp. Syst., 2016, 10, (7), pp. 495502.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6238
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6238
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address