Portfolio management of battery storages in multiple electricity markets

Portfolio management of battery storages in multiple electricity markets

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A battery storage can diversify its portfolio by participating in the energy market, regulation market, and point-to-point (PTP) obligation market. In order for a battery storage to maximise profits and hedge risks, a portfolio management model that co-optimises a storage's bids in these three markets is proposed. The proposed model is trained and validated by real market data. The performance of the proposed portfolio is compared with the portfolio without consideration of PTP obligation, indicating that the proposed method is effective in risk hedging. Numerical results also show the trade-off between storage's expected profits and risks, which can be useful for a battery storage owner with a certain degree of risk aversion.


    1. 1)
      • 1. Shafiee, S., Zareipour, H., Knight, A.M., et al: ‘Risk-constrained bidding and offering strategy for a merchant compressed air energy storage plant’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 946957.
    2. 2)
      • 2. Dominguez, O.D.M., Kasmaei, M.P., Lavorato, M., et al: ‘Optimal siting and sizing of renewable energy sources, storage devices, and reactive support devices to obtain a sustainable electrical distribution systems’, Energy Syst., 2018, 9, (3), pp. 529550.
    3. 3)
      • 3. Delgado-Antillón, C.P., Domínguez-Navarro, J.A.: ‘Probabilistic siting and sizing of energy storage systems in distribution power systems based on the islanding feature’, Electr. Power Syst. Res., 2018, 155, pp. 225235.
    4. 4)
      • 4. Kazemi, M., Zareipour, H., Amjady, N., et al: ‘Operation scheduling of battery storage systems in joint energy and ancillary services markets’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 17261735.
    5. 5)
      • 5. Lu, N., Chow, J.H., Desrochers, A.A.: ‘Pumped-storage hydro-turbine bidding strategies in a competitive electricity market’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 834841.
    6. 6)
      • 6. He, G., Chen, Q., Kang, C., et al: ‘Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23592367.
    7. 7)
      • 7. Ghamkhari, M., Wierman, A., Mohsenian-Rad, H.: ‘Energy portfolio optimization of data centers’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 18981910.
    8. 8)
      • 8. Han, D., Sun, W., Fan, X.: ‘Dynamic energy management in smart grid: a fast randomized first-order optimization algorithm’, Int. J. Electr. Power Energy Syst., 2018, 94, pp. 179187.
    9. 9)
      • 9. Goebel, C., Hesse, H., Schimpe, M., et al: ‘Model-based dispatch strategies for lithium-ion battery energy storage applied to pay-as-bid markets for secondary reserve’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 27242734.
    10. 10)
      • 10. Khani, H., Zadeh, M.R.D.: ‘Online adaptive real-time optimal dispatch of privately owned energy storage systems using public-domain electricity market prices’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 930938.
    11. 11)
      • 11. Feng, D., Gan, D., Zhong, J., et al: ‘Supplier asset allocation in a pool-based electricity market’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 11291138.
    12. 12)
      • 12. Thatte, A.A., Xie, L., Viassolo, D.E., et al: ‘Risk measure based robust bidding strategy for arbitrage using a wind farm and energy storage’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 21912199.
    13. 13)
      • 13. De La Nieta, A.A.S., Contreras, J., Munoz, J.I.: ‘Optimal coordinated wind-hydro bidding strategies in day-ahead markets’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 798809.
    14. 14)
      • 14. Freire, L., Street, A., Lima, D.A., et al: ‘A hybrid MILP and benders decomposition approach to find the nucleolus quota allocation for a renewable energy portfolio’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 32653275.
    15. 15)
      • 15. Rodrigues, T., Ramírez, P.J., Strbac, G.: ‘Risk-averse bidding of energy and spinning reserve by wind farms with on-site energy storage’, IET Renew. Power Gener., 2018, 12, (2), pp. 165173.
    16. 16)
      • 16. Wang, Y., Dvorkin, Y., Fernandez-Blanco, R., et al: ‘Look-ahead bidding strategy for energy storage’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 11061117.
    17. 17)
      • 17. Li, T., Shahidehpour, M.: ‘Risk-constrained FTR bidding strategy in transmission markets’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 10141021.
    18. 18)
      • 18. Fang, X., Li, F., Hu, Q., et al: ‘Strategic CBDR bidding considering FTR and wind power’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 24642474.
    19. 19)
      • 19. Babayiǧit, C., Rocha, P., Das, T.K.: ‘A two-tier matrix game approach for obtaining joint bidding strategies in FTR and energy markets’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 12111219.
    20. 20)
      • 20. Apostolopoulou, D., Gross, G., Guler, T.: ‘Optimized FTR portfolio construction based on the identification of congested network elements’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 49684978.
    21. 21)
      • 21. Melgar-Dominguez, O.D., Pourakbari-Kasmaei, M., Mantovani, J.R.S.: ‘Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units’, IEEE Trans. Sustain. Energy, 2018, doi: 10.1109/TSTE.2018.2828778.
    22. 22)
      • 22. Zugno, M., Conejo, A.J.: ‘A robust optimization approach to energy and reserve dispatch in electricity markets’, Eur. J. Oper. Res., 2015, 247, (2), pp. 659671.
    23. 23)
      • 23. Chen, S., Ping, J., Le, X., et al: ‘Forming bidding curves for a distribution system operator’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 53895400.
    24. 24)
      • 24. Chen, S., Chen, Q., Xu, Y.: ‘Strategic bidding and compensation mechanism for a load aggregator with direct thermostat control capabilities’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 23272336.
    25. 25)
      • 25. ERCOT Market Information’: Available at
    26. 26)
      • 26. Yu, J., Wang, S.X.: ‘A study of ERCOT real-time energy market price’. 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., Canada, June 2006.
    27. 27)
      • 27. Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: ‘Optimal offering strategies for wind power producers considering uncertainty and risk’, IEEE Syst. J., 2012, 6, (2), pp. 270277.
    28. 28)
      • 28. One-sample Kolmogorov-Smirnov test’: Available at:
    29. 29)
      • 29. Lofberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508), New Orleans, LA, USA, September 2004, pp. 284289.

Related content

This is a required field
Please enter a valid email address