Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Contributions to the sequence-decoupling compensation power flow method for distribution system analysis

Many applications of Distribution Management Systems (DMSs) are based on power flow solutions. Fast and robust power flow methods capable of accommodating systems of general topologies and the most common models of Distributed Energy Resources (DERs) are, therefore, becoming indispensable. In this context, this paper proposes contributions for the symmetrical component-based three-phase power flow methods for distribution system analysis. The introduction of symmetrical components in the three-phase power flow problem allows it to be decomposed into three single-phase problems, which can be solved iteratively. Such decomposition significantly expedites the power flow solution problem, simplifies implementation complexity, and makes way for parallel computing techniques. The accuracy and validity of the proposed method were tested on distribution test feeders of different sizes and topologies and the results of several case studies were compared with those obtained by the Sequence Newton–Raphson method, and by the OpenDSS. Contributions of the paper include: (i) A new formulation of the Sequence-Decoupling Compensation method in terms of real-valued matrices; (ii) a novel modelling for PV buses; (iii) a simple procedure to tackle convergence issues related to delta and ungrounded-wye connected transformers; and (iv) a modelling for wye, closed- and open-delta connected step-voltage regulators in the sequence frame of reference.

References

    1. 1)
      • 9. Wang, X., Shahidehpour, M., Jiang, C., et al: ‘Three-phase distribution power flow calculation for loop-based microgrids’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 39553967.
    2. 2)
      • 12. Zhang, X.P., Chen, H.: ‘Asymmetrical three-phase load-flow study based on symmetrical component theory’, IEE Proc., Gener. Transm. Distrib., 1994, 141, (3), pp. 248252.
    3. 3)
      • 34. Smith, B.C., Arrillaga, J.: ‘Improved three-phase load flow using phase and sequence components’, IEE Proc., Gener. Transm. Distrib., 1998, 145, (3), pp. 245250.
    4. 4)
      • 17. Dzafic, I., Pal, B.C., Gilles, M., et al: ‘Generalized π fortescue equivalent admittance matrix approach to power flow solution’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 193202.
    5. 5)
      • 22. Dugan, R.C., McDermott, T.E.: ‘An open source platform for collaborating on smart grid research’. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 17.
    6. 6)
      • 25. Power transformers – Part 1: General. Standard, International Electrotechnical Commission, Geneva, CH, April 2011.
    7. 7)
      • 21. Džafić, I., Jabr, R.A., Neisius, H.-T.: ‘Transformer modeling for three-phase distribution network analysis’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 26042611.
    8. 8)
      • 4. Cheng, C.S., Shirmohammadi, D.: ‘A three-phase power flow method for real-time distribution system analysis’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 671679.
    9. 9)
      • 27. Bazrafshan, M., Gatsis, N.: ‘Comprehensive modeling of three-phase distribution systems via the bus admittance matrix’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 20152029.
    10. 10)
      • 2. de Almeida, M.C., Ochoa, L.F.: ‘An improved three-phase AMB distribution system state estimator’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 14631473.
    11. 11)
      • 32. Torquato, R., Salles, D., Meira, P.C.M., et al: ‘A comprehensive assessment of PV hosting capacity on low-voltage distribution systems’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 10021012.
    12. 12)
      • 20. Ghazali, S., Nor, K.M., Abdel-akher, M.: ‘Parallel sequence decoupled full newton-raphson three phase power flow’. TENCON 2009 – 2009 IEEE Region 10 Conf., Singapore, January 2009, pp. 16.
    13. 13)
      • 24. Abdel-Akher, M., Nor, K.M.: ‘Fault analysis of multiphase distribution systems using symmetrical components’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 29312939.
    14. 14)
      • 13. Zhang, X.P.: ‘Fast three phase load flow methods’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 15471554.
    15. 15)
      • 10. Chen, T.-H., Chen, M.-S., Hwang, K.-J., et al: ‘Distribution system power flow analysis-a rigid approach’, IEEE Trans. Power Deliv., 1991, 6, (3), pp. 11461152.
    16. 16)
      • 23. Das, J.C.: ‘Understanding symmetrical components for power system modeling’ (John Wiley & Sons, Hoboken, New Jersey, USA, 2017).
    17. 17)
      • 36. de Araujo, L.R., Penido, D.R.R., do Amaral Filho, N.A., et al: ‘Sensitivity analysis of convergence characteristics in power flow methods for distribution systems’, Int. J. Electr. Power Energy Syst., 2018, 97, pp. 211219.
    18. 18)
      • 14. Abdel-Akher, M., Nor, K.M., Rashid, A.H.A.: ‘Improved three-phase power-flow methods using sequence components’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 13891397.
    19. 19)
      • 8. Yang, N.-C., Chen, H.-C.: ‘Three-phase power-flow solutions using decomposed quasi-newton method for unbalanced radial distribution networks’, IET Gener. Transm. Distrib., 2017, 11, (14), pp. 35943600.
    20. 20)
      • 30. Navarro-Espinosa, A., Ochoa, L.F.: ‘Probabilistic impact assessment of low carbon technologies in lv distribution systems’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 21922203.
    21. 21)
      • 11. Lo, K.L., Zhang, C.: ‘Decomposed three-phase power flow solution using the sequence component frame’, IEE Proc. C, Gener. Transm. Distrib., 1993, 140, (3), pp. 181188.
    22. 22)
      • 3. Shirmohammadi, D., Wayne Hong, H., Semlyen, A., et al: ‘A compensation-based power flow method for weakly meshed distribution and transmission networks’, IEEE Trans. Power Syst., 1988, 3, (2), pp. 753762.
    23. 23)
      • 33. Abur, A., Singh, H., Liu, H., et al: ‘Three phase power flow for distribution systems with dispersed generation’. 14th PSCC, Sevilla, 2002, vol. 11, no. 3.
    24. 24)
      • 26. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, Boca Raton, FL, 2007, 2nd edn.).
    25. 25)
      • 35. Schincariol, R., Fernandes, T., de Almeida, M.: ‘Specifying angular reference for three-phase distribution system state estimators’, IET Gener. Transm. Distrib., 2017, 12, (7), pp. 16551663.
    26. 26)
      • 15. Kamh, M.Z., Iravani, R.: ‘Unbalanced model and power-flow analysis of microgrids and active distribution systems’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 28512858.
    27. 27)
      • 28. ‘IEEE PES distribution systems analysis subcommittee radial test feeders’. Available at http://sites.ieee.org/pes-testfeeders/resources/, accessed September 2018.
    28. 28)
      • 6. Teng, J.-H.: ‘Modelling distributed generations in three-phase distribution load flow’, IET Gener. Transm. Distrib., 2008, 2, (3), pp. 330340.
    29. 29)
      • 18. Yang, N.-C.: ‘Three-phase power flow calculations using direct Z bus method for large-scale unbalanced distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10481055.
    30. 30)
      • 16. Kamh, M.Z., Iravani, R.: ‘A unified three-phase power-flow analysis model for electronically coupled distributed energy resources’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 899909.
    31. 31)
      • 5. Teng, J.-H.: ‘A direct approach for distribution system load flow solutions’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 882887.
    32. 32)
      • 29. Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’ (McGraw-Hill, New York, New York, USA, 1968).
    33. 33)
      • 7. Moghaddas-Tafreshi, S.M., Mashhour, E.: ‘Distributed generation modeling for power flow studies and a three-phase unbalanced power flow solution for radial distribution systems considering distributed generation’, Electr. Power Syst. Res., 2009, 79, (4), pp. 680686.
    34. 34)
      • 37. Generation and Load Shapes (Google Drive). Available at https://drive.google.com/drive/folders/1wIpm0-EpP8j34l6GswKMGltZw1YYdbY-, accessed September 2018.
    35. 35)
      • 1. Huang, Y., Werner, S., Huang, J., et al: ‘State estimation in electric power grids: meeting new challenges presented by the requirements of the future grid’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 3343.
    36. 36)
      • 31. Jannat, M.B., Savić, A.S.: ‘Optimal capacitor placement in distribution networks regarding uncertainty in active power load and distributed generation units production’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 30603067.
    37. 37)
      • 19. Ahmadi, H., Mart, J.R., von Meier, A.: ‘A linear power flow formulation for three-phase distribution systems’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 50125021.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6176
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address