Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free ADMM-based algorithm for solving DC-OPF in a large electricity network considering transmission losses

The authors address the problem of solving DC-optimal power flow (OPF) considering transmission losses in a large electricity network. The loss in a line is considered in the power balance equation and is taken as proportional to the absolute value of the flow through the line. Many standard solvers fail to converge to an optimal solution of the DC-OPF for comparatively large bus systems, even with a quadratic cost of generation. The authors use a decomposition algorithm such as alternating directions method of multipliers (ADMM) to address this problem. However, the ADMM algorithm cannot be directly applied to this problem because of the sparsity of the coefficient matrices of the objective function and the presence of inequality constraints. Thus, the authors introduce two relaxations to the DC-OPF problem, namely the regularisation and the modified penalisation. The authors provide a novel ADMM algorithm for the regularised and the modified penalised problem which converges to an optimal solution even for large bus systems. The authors show that the ADMM algorithm converges near to the optimal solution of the DC-OPF problem if the regularisation and modified penalisation parameters are chosen carefully. Numerical simulations illustrate the effectiveness of the algorithm.

References

    1. 1)
      • 7. Erseghe, T.: ‘Distributed optimal power flow using ADMM’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23702380.
    2. 2)
      • 11. Lin, T., Ma, S., Zhang, S.: ‘On the global linear convergence of the ADMM with multiblock variables’, SIAM J. Optim., 2015, 25, (3), pp. 14781497.
    3. 3)
      • 1. Coffrin, C, Hentenryck, P.V, Bent, R: ‘Approximating line losses and apparent power in ac power flow linearizations’. Power and Energy Society General Meeting, 2012, pp. 18.
    4. 4)
      • 2. Dos Santos, T.N., Diniz, A.L.: ‘A dynamic piecewise linear model for dc transmission losses in optimal scheduling problems’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 508519.
    5. 5)
      • 16. Bertsekas, D.P., Tsitsiklis, J.N.: ‘Parallel and distributed computation: numerical methods’ (Prentice Hall, Englewood Cliffs, NJ, 1989), vol. 23.
    6. 6)
      • 12. Zhang, X.-P.: ‘Restructured electric power systems: analysis of electricity markets with equilibrium models’ (John Wiley & Sons, Hoboken, New Jersey, 2010).
    7. 7)
      • 17. Chen, C., He, B., Ye, Y., et al: ‘The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent’, Math. Program., 2016, 155, (1–2), pp. 5779.
    8. 8)
      • 21. Hong, M., Luo, Z.-Q.: ‘On the linear convergence of the alternating direction method of multipliers’, Math. Program., 2017, 162, (1–2), pp. 165199.
    9. 9)
      • 5. Ou, M., Xue, Y., Zhang, X.-P.: ‘Iterative dc optimal power flow considering transmission network loss’, Electr. Power Compon. Syst., 2016, 44, (9), pp. 955965.
    10. 10)
      • 18. Han, D., Yuan, X.: ‘A note on the alternating direction method of multipliers’, J. Optim. Theory Appl., 2012, 155, (1), pp. 227238.
    11. 11)
      • 6. Eldridge, B., O'Neill, R., Castillo, A.: ‘An improved method for the DC-OPF with losses’, IEEE Trans. Power Syst., 2018, 13, (4), pp. 37793788, doi: 10.1109/TPWRS.2017.2776081.
    12. 12)
      • 9. Chen, G., Yang, Q.: ‘An ADMM-based distributed algorithm for economic dispatch in islanded microgrids’, IEEE Trans. Ind. Inf., 2017, 14, (9), pp. 38923903, doi: 10.1109/TII.2017.2785366.
    13. 13)
      • 13. Hu, Z., Cheng, H., Yan, Z., et al: ‘An iterative LMP calculation method considering loss distributions’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 14691477.
    14. 14)
      • 8. Wang, Y., Wu, L., Wang, S.: ‘A fully-decentralized consensus-based admm approach for DC-OPF with demand response’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 26372647.
    15. 15)
      • 22. Lin, T., Ma, S., Zhang, S.: ‘Iteration complexity analysis of multi-block ADMM for a family of convex minimization without strong convexity’, J. Sci. Comput., 2016, 69, (1), pp. 5281.
    16. 16)
      • 3. Helseth, A.: ‘A linear optimal power flow model considering nodal distribution of losses’. 2012 9th Int. Conf. on the IEEE European Energy Market (EEM), Florence, Italy, 2012, pp. 18.
    17. 17)
      • 14. Heymann, B., Jofré, A.: ‘Mechanism design and allocation algorithms for network markets with piece-wise linear costs and externalities’, 2016, https://hal.archives-ouvertes.fr/hal-01416411, accessed August 2017.
    18. 18)
      • 23. Kirkwood, J.R.: ‘An introduction to analysis’ (Waveland Press, Illinois, USA, 2002).
    19. 19)
      • 4. Binetti, G., Davoudi, A., Lewis, F.L., et al: ‘Distributed consensus-based economic dispatch with transmission losses’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17111720.
    20. 20)
      • 15. Boyd, S., Parikh, N., Chu, E., et al: ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Found. Trends Mach. Learn., 2011, 3, (1), pp. 1122.
    21. 21)
      • 20. Hong, M., Luo, Z.-Q., Razaviyayn, M.: ‘Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems’, SIAM J. Optim., 2016, 26, (1), pp. 337364.
    22. 22)
      • 10. Li, P., Hu, J.: ‘An ADMM based distributed finite-time algorithm for economic dispatch problems’, IEEE Access, 2018, pp. 3096930976, doi: 10.1109/ACCESS.2018.2837663.
    23. 23)
      • 19. Shi, W., Ling, Q., Yuan, K., et al: ‘On the linear convergence of the ADMM in decentralized consensus optimization’, IEEE Trans. Signal Process., 2014, 62, (7), pp. 17501761.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.6036
Loading

Related content

content/journals/10.1049/iet-gtd.2018.6036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address