Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Raising the potential of a local market for the reactive power provision by electric vehicles in distribution grids

The promotion of electric vehicles (EVs), triggered by environmental concerns, can also increase the flexibility of power systems through ancillary services, such as frequency regulation among others. Nevertheless, EV penetration has increased the concern regarding voltage drops in distribution grids. This concern has motivated researchers to examine EV reactive power provision to mitigate such problems. This work proposes a local market perspective to promote EV reactive power provision, enabling distribution system operators to control the voltage level using cost-effective solutions. The authors propose the extension of a centralised control framework that schedules EV frequency regulation to optimise the reactive power provided by the same EVs. Additionally, extra power losses in chargers while EVs provide reactive power were investigated, and the associated cost in the economic evaluations were considered. A test-case with the IEEE 33-node distribution grid is used to assess the market potential of EV reactive power provision. This new service extends EV penetration in a cost-efficient way without causing voltage problems. The simulation concludes that it is economically feasible to use EVs for reactive local provision with efficient chargers. These outcomes sustain the potential of promoting such new EV services through a proper market in distribution grids.

References

    1. 1)
      • 37. Silva, M., Morais, H., Vale, Z.: ‘An integrated approach for distributed energy resource short-term scheduling in smart grids considering realistic power system simulation’, Energy Convers. Manag., 2012, 64, pp. 273288.
    2. 2)
      • 8. Samimi, A., Kazemi, A.: ‘A new approach to optimal allocation of reactive power ancillary service in distribution systems in the presence of distributed energy resources’, Appl. Sci., 2015, 5, (4), pp. 12841309.
    3. 3)
      • 19. Dharmakeerthi, C.H., Mithulananthan, N., Saha, T.K.: ‘Impact of electric vehicle fast charging on power system voltage stability’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 241249.
    4. 4)
      • 36. Drud, A.: ‘CONOPT—a large-scale GRG code’, ORSA J. Comput., 1992, 6, pp. 207219.
    5. 5)
      • 38. Enel’, https://www.enel.com/, accessed April 2018.
    6. 6)
      • 34. Drud, A.: ‘GAMS/CONOPT user's notes’, 2001.
    7. 7)
      • 24. Weckx, S., D'Hulst, R., Claessens, B., et al: ‘Multiagent charging of electric vehicles respecting distribution transformer loading and voltage limits’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 28572867.
    8. 8)
      • 29. Parker project’, https://energiforskning.dk/en/node/8432, accessed April 2018.
    9. 9)
      • 13. Camilo, F.M., Castro, R., Almeida, M.E., et al: ‘Assessment of overvoltage mitigation techniques in low-voltage distribution networks with high penetration of photovoltaic microgeneration’, IET Renew. Power Gener., 2018, 12, (6), pp. 649656.
    10. 10)
      • 1. Bussar, C., Stöcker, P., Cai, Z., et al: ‘Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050-sensitivity study’, J. Energy Storage, 2016, 6, pp. 110.
    11. 11)
      • 4. Hu, J., Morais, H., Sousa, T., et al: ‘Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects’, Renew. Sust. Energy Rev., 2016, 56, pp. 12071226.
    12. 12)
      • 16. Azzouz, M.A., Shaaban, M.F., El-Saadany, E.F.: ‘Real-time optimal voltage regulation for distribution networks incorporating high penetration of PEVs’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 32343245.
    13. 13)
      • 14. Wu, C., Mohsenian-Rad, H., Huang, J., et al: ‘PEV-based combined frequency and voltage regulation for smart grid’. Proc. IEEE PES Innovative Smart Grid Technologies, Washington D.C., USA, January 2012.
    14. 14)
      • 35. Ghanaatian, M., Lotfifard, S.: ‘Control of flywheel energy storage systems in the presence of uncertainties’, IEEE Trans. Sust. Energy, 2019, 10, (1), pp. 3645.
    15. 15)
      • 15. Zou, N., Qian, L., Li, H.: ‘Auxiliary frequency and voltage regulation in microgrid via intelligent electric vehicle charging’. Proc. IEEE Int. Conf. on Smart Grid Communications, Venice, Italy, November 2014, pp. 662667.
    16. 16)
      • 27. Knezović, K., Marinelli, M., Zecchino, A., et al: ‘Supporting involvement of electric vehicles in distribution grids: lowering the barriers for a proactive integration’, Energy, 2017, 134, pp. 458468.
    17. 17)
      • 31. NUVVE’, http://nuvve.com/, accessed April 2018.
    18. 18)
      • 33. Keane, A., Ochoa, L.F., Borges, C.L.T., et al: ‘State-of-the-art techniques and challenges ahead for distributed generation planning and optimization’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14931502.
    19. 19)
      • 25. Ehsani, M., Falahi, M., Lotfifard, S.: ‘Vehicle to grid services: potential and applications’, Energies, 2012, 5, (10), pp. 40764090.
    20. 20)
      • 26. Sousa, T., Morais, H., Vale, Z., et al: ‘A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context’, Energy, 2015, 85, pp. 236250.
    21. 21)
      • 17. Buja, G., Bertoluzzo, M., Fontana, C.: ‘Reactive power compensation capabilities of V2G-enabled electric vehicles’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 94479459.
    22. 22)
      • 6. Abapour, S., Zare, K., Mohammadi-Ivatloo, B.: ‘Evaluation of technical risks in distribution network along with distributed generation based on active management’, IET Gener. Transm. Distrib., 2014, 8, (4), pp. 609618.
    23. 23)
      • 18. Yong, J.Y., Ramachandaramurthy, V.K., Tan, K.M., et al: ‘Experimental validation of a three-phase off-board electric vehicle charger with new power grid voltage control’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 27032713.
    24. 24)
      • 32. Rosenthal, R.: ‘GAMS – a user's guide’ (DC GAMS Dev. Corp., Washington, 2008).
    25. 25)
      • 22. Zecchino, A., Marinelli, M.: ‘Analytical assessment of voltage support via reactive power from new electric vehicles supply equipment in radial distribution grids with voltage-dependent loads’, Int. J. Electr. Power Energy Syst., 2018, 97, pp. 1727.
    26. 26)
      • 11. San Román, T.G., Momber, I., Abbad, M.R., et al: ‘Regulatory framework and business models for charging plug-in electric vehicles: infrastructure, agents, and commercial relationships’, Energy. Policy., 2011, 39, (10), pp. 63606375.
    27. 27)
      • 30. Arias, N.B., Hashemi, S., Andersen, P.B., et al: ‘V2g enabled EVs providing frequency containment reserves: field results’. Proc. IEEE Int. Conf. on Industrial Technology, Lyon, France, February 2018, pp. 18141819.
    28. 28)
      • 23. Leemput, N., Geth, F., Van Roy, J., et al: ‘Reactive power support in residential LV distribution grids through electric vehicle charging’, Sust. Energy, Grids Netw., 2015, 3, pp. 2435.
    29. 29)
      • 20. Leemput, N., Geth, F., Van Roy, J., et al: ‘Impact of electric vehicle on-board single-phase charging strategies on a flemish residential grid’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18151822.
    30. 30)
      • 7. Li, R., Wang, W., Chen, Z., et al: ‘A review of optimal planning active distribution system: models, methods, and future researches’, Energies, 2017, 10, (11), pp. 127.
    31. 31)
      • 21. Knezović, K., Marinelli, M.: ‘Phase-wise enhanced voltage support from electric vehicles in a Danish low-voltage distribution grid’, Electr. Power Syst. Res., 2016, 140, pp. 274283.
    32. 32)
      • 3. Kempton, W., Tomić, J.: ‘Vehicle-to-grid power fundamentals: calculating capacity and net revenue’, J. Power Sources, 2005, 144, (1), pp. 268279.
    33. 33)
      • 2. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sust. Energy Rev., 2014, 39, pp. 748764.
    34. 34)
      • 5. Yilmaz, M., Krein, P.T.: ‘Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 56735689.
    35. 35)
      • 9. EURELECTRIC.: ‘Active distribution system management - A key tool for the smooth integration of distributed generation’, 2013.
    36. 36)
      • 12. Viawan, F.A., Karlsson, D.: ‘Voltage and reactive power control in systems with synchronous machine-based distributed generation’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 10791087.
    37. 37)
      • 28. Andersen, P.B., Poulsen, B., Decker, M., et al: ‘Evaluation of a generic virtual power plant framework using service oriented architecture’. Proc. IEEE 2nd Int. Power and Energy Conf., Johor Bahru, Malaysia, December 2008, pp. 12121217.
    38. 38)
      • 10. Zhao, J., Wang, C., Zhao, B., et al: ‘A review of active management for distribution networks: current status and future development trends’, Electr. Power Compon. Syst., 2014, 42, (3–4), pp. 280293.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5947
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5947
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address