Determining minimum number and optimal placement of PMUs for fault observability in one-terminal algorithms

Determining minimum number and optimal placement of PMUs for fault observability in one-terminal algorithms

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

One-terminal algorithms utilise only measurements at one end of the transmission lines for fault location, and thus, the required number of phasor measurement units (PMUs) is less compared to two-end algorithms. There have not been major studies in terms of reducing required number of PMUs to implement fault location algorithms based on single terminal data. This study develops a fault observability rule using the basic theories of power system observability. Then, this rule is used in some optimisation problems for determining the minimum number and optimal placement of PMUs to attempt the complete system observability in normal condition and complete or relative fault observability simultaneously. Moreover, here, a novel fault location algorithm is proposed, which uses one-terminal voltage and current data. To enhance the accuracy of fault location, the novel algorithm utilises positive bus impedance matrix of the network along with the voltage and current equations of the faulted line. The performance of the proposed fault location algorithm and optimal placement method of PMUs for power system and fault observability is investigated on 39-bus test system.


    1. 1)
      • 1. Aminifar, F., Fotuhi Firuzabad, M., Safdarian, A., et al: ‘Synchrophasor measurement technology in power systems: panorama and state-of-the-art’, IEEE Access, 2014, 2, pp. 16071628.
    2. 2)
      • 2. Gopakumar, P., Reddy, M.J.B., Mohanta, D.K.: ‘Transmission line fault detection and localisation methodology using phasor measurement unit measurements’, IET Gener. Transm. Distrib., 2015, 9, pp. 10331042.
    3. 3)
      • 3. Gopakumar, P., Reddy, M.J.B., Mohanta, D.K.: ‘Adaptive fault identification and classification methodology for smart power grids using synchronous phasor angle measurements’, IET Gener. Transm. Distrib., 2015, 9, pp. 133145.
    4. 4)
      • 4. Joe-Air, J., Jun-Zhe, Y., Ying-Hong, L., et al: ‘An adaptive PMU based fault detection/location technique for transmission lines. I. Theory and algorithms’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 486493.
    5. 5)
      • 5. Ching-Shan, C., Chih-Wen, L., Joe-Air, J.: ‘A new adaptive PMU based protection scheme for transposed/untransposed parallel transmission lines’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 395404.
    6. 6)
      • 6. Kai-Ping, L., Chih-Wen, L., Joe-Air, J., et al: ‘A novel fault location algorithm for multi-terminal lines using phasor measurement units’. Proc. of the 37th Annual North American Power Symp., Ames, IA, USA, 2005, pp. 576581.
    7. 7)
      • 7. Chih-Wen, L., Kai-Ping, L., Ching-Shan, C., et al: ‘A universal fault location technique for N-terminal transmission lines’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 13661373.
    8. 8)
      • 8. Gilany, M., El Din, E.S.T., Abdel Aziz, M.M., et al: ‘An accurate scheme for fault location in combined overhead line with underground power cable’. IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, 2005, vol. 3, pp. 25212527.
    9. 9)
      • 9. Chih-Wen, L., Tzu-Chiao, L., Chi-Shan, Y., et al: ‘A fault location technique for two-terminal multisection compound transmission lines using synchronized phasor measurements’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 113121.
    10. 10)
      • 10. Reston, G., Radojević, Z.M., Kim, C.H., et al: ‘New settings-free fault location algorithm based on synchronised sampling’, IET Gener. Transm. Distrib., 2011, 5, (3), pp. 376383.
    11. 11)
      • 11. Izykowski, J., Rosolowski, E., Balcerek, P., et al: ‘Accurate noniterative fault location algorithm utilizing two-end unsynchronized measurements’, IEEE Trans. Power Deliv., 2010, 25, (1), pp. 7280.
    12. 12)
      • 12. Kai-Ping, L., Chih-Wen, L., Chi-Shan, Y., et al: ‘Transmission network fault location observability with minimal PMU placement’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 11281136.
    13. 13)
      • 13. Takagi, T., Yamakoshi, Y., Yamaura, M., et al: ‘Development of a new type fault locator using the one-terminal voltage and current data’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (8), pp. 28922898.
    14. 14)
      • 14. Adu, T.: ‘A new transmission line fault locating system’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 498503.
    15. 15)
      • 15. Eriksson, L., Saha, M.M., Rockefeller, G.D.: ‘An accurate fault locator with compensation for apparent reactance in the fault resistance resulting from remote-end infeed’, IEEE Power Eng. Rev., 1985, PER-5, (2), pp. 4444.
    16. 16)
      • 16. Kawady, T., Stenzel, J.: ‘A practical fault location approach for double circuit transmission lines using single end data’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 11661173.
    17. 17)
      • 17. Xiu, W., Liao, Y.: ‘Online one-end fault location algorithm for parallel transmission lines’, Smart Grid Renew. Energy, 2011, 2, (4), pp. 359366.
    18. 18)
      • 18. Zhang, Q., Zhang, Y., Song, W., et al: ‘Fault location of two-parallel transmission line for non-earth fault using one-terminal data’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 863867, doi:10.1109/61.772325.
    19. 19)
      • 19. Eisa, A.A., Ramar, K.: ‘Accurate one-end fault location for overhead transmission lines in interconnected power systems’, Int. J. Electr. Power Energy Syst., 2010, 32, pp. 383389.
    20. 20)
      • 20. Suonan, J., Wang, Z., Kang, X.: ‘An accurate fault location algorithm based on parameter identification of linear differential equation using one terminal data’. Int. Conf. on Advanced Power System Automation and Protection (APAP), Beijing, China, 2011, vol. 1, pp. 407412.
    21. 21)
      • 21. Korkali, M., Abur, A.: ‘Optimal deoployment of wide-area synchronized measurements for fault-location observability’, IEEE Trans. Power Syst., 2016, 28, (1), pp. 482489.
    22. 22)
      • 22. Phadke, A.G., Thorp, J.S.: ‘Synchronized phasor measurements and their applications’ (Springer, New York, 2008).
    23. 23)
      • 23. Jiang, Q., Wang, B., Wang, H.: ‘PMU-based fault location using voltage measurements in large transmission networks’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 16441652.
    24. 24)
      • 24. Jiang, Q., Wang, B., Li, X.: ‘An efficient PMU-based fault location technique for multi-terminal transmission lines’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 16751682.
    25. 25)
      • 25. Akke, M., Thorp, J.T.: ‘Some improvements in the three-phase differential equation algorithm for fast transmission line protection’, IEEE Trans. Power Deliv., 1998, 13, (1), pp. 6672.
    26. 26)
      • 26. Krumpholz, G.R., Clements, K.A., Davis, P.W.: ‘Power system observability: a practical algorithm using network topology’, IEEE Trans. Power Appar. Syst., 1980, PAS-99, (4), pp. 15341542.
    27. 27)
      • 27. Clements, K.A., Krumphoolz, G.R., Davis, R.W.: ‘Power system state estimation with measurement deficiency: an observability measurement placement algorithm’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (7), pp. 20122020.
    28. 28)
      • 28. Fetzer, E.E., Anderson, P.M.: ‘Observability in the state estimation of power systems’, IEEE Trans. Power Appar. Syst., 1975, PAS-94, (6), pp. 19811988.
    29. 29)
      • 29. Baldwin, T.L., Mili, L., Boisen, M.B., et al: ‘Power system observability with minimal phasor measurement placement’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 707715.
    30. 30)
      • 30. Milosevic, B., Begovic, M.: ‘Nondominated sorting genetic algorithm for optimal phasor measurement placement’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 6975.
    31. 31)
      • 31. Mazhari, S.M., Monsef, H., Lessani, H., et al: ‘A multi-objective PMU placement method considering measurement redundancy and observability value under contingencies’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21362146.

Related content

This is a required field
Please enter a valid email address