access icon free Extended fast decoupled power flow for reconfiguration networks in distribution systems

This study proposes a power flow methodology focused on the need for reconfiguration analysis in modern distribution networks. The proposal is based on the extended fast decoupled Newton–Raphson method, which uses the information of the network switching equipment status (open or closed). To deal with eventual islanding during a reconfiguration procedure, a numerical observability technique used in state estimation analysis has been adapted for topological processing when network segments are disconnected from voltage references. A complex per unit normalisation technique is employed so that the power flow calculation by the fast decoupled approach is viable, even for networks having high R/X ratio lines. Simulation results considering two distribution feeders, one of large size, with different topological conditions are presented. The performance of the proposed methodology qualifies it as a relevant computational tool to support network reconfiguration studies involving emergent distribution systems.

Inspec keywords: distribution networks; Newton-Raphson method; load flow; power system state estimation

Other keywords: distribution networks; state estimation analysis; reconfiguration procedure; extended fast decoupled Newton-Raphson method; voltage references; reconfiguration analysis; complex-per-unit normalisation technique; computational tool; power flow calculation; topological processing; high R-X ratio lines; reconfiguration networks; topological conditions; network switching equipment status; extended fast decoupled power flow; numerical observability technique; distribution systems; eventual islanding

Subjects: Distribution networks; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 23. Stagg, G.W., El-Abiad, A.H.: ‘Computer methods in power system analysis’ (McGraw-Hill, New York, NY, USA, 1968).
    2. 2)
      • 4. Syahputra, R., Robandi, I., Ashari, M.: ‘Optimal distribution network reconfiguration with penetration of distributed energy resources’. Int. Conf. on Information Technology, Computer and Electrical Engineering, Semarang, Indonesia, November 2014, pp. 388393.
    3. 3)
      • 18. Sun, H., Guo, Q., Zhang, B., et al: ‘Master-slave-splitting based distributed global power flow method for integrated transmission and distribution analysis’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 14841492.
    4. 4)
      • 13. de León, F., Semlyen, A.: ‘Iterative solvers in the Newton power flow problem: preconditioners, inexact solutions, and partial Jacobian updates’, IEE Proc., Gener. Transm. Distrib., 2002, 149, (4), pp. 479484.
    5. 5)
      • 1. Roytelman, I., Landenberger, V.: ‘Real-time distribution system analysis – integral part of DMS’. Power Systems Conf. and Exposition, Seattle, WA, USA, March 2009, pp. 16.
    6. 6)
      • 17. Li, Z.S., Wang, J.H., Sun, H.B., et al: ‘Transmission contingency analysis based on integrated transmission and distribution power flow in smart grid’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 33563367.
    7. 7)
      • 5. Larimi, S.M.M., Haghifam, M.R., Moradkhani, A.: ‘Risk-based reconfiguration of active electric distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (4), pp. 10061015.
    8. 8)
      • 11. Lourenço, E.M., Costa, A.S., Pinto, R.R.Jr.: ‘Steady-state solution for power networks modeled at bus section level’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 1020.
    9. 9)
      • 22. Monticelli, A.: ‘State estimation in electric power systems – a generalized approach’ (Kluwer, Norwell, MA, USA, 1999).
    10. 10)
      • 19. Tortelli, O.L., Lourenço, E.M., Garcia, A.V., et al: ‘Fast decoupled power flow to emerging distribution systems via complex pu normalization’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 13511358.
    11. 11)
      • 16. Lourenco, E., Loddi, T., Tortelli, O.: ‘Unified load flow analysis for emerging distribution systems’. Innovative Smart Grid Technologies Conf. Europe, Gothenberg, Sweden, October 2010.
    12. 12)
      • 27. Fonseca, A.G.: ‘Reconfiguration analysis in distribution grids based on fast decoupled power flow’. M.Sc. thesis, Dept. Elect. Eng. Universidade Federal do Paraná, Curitiba, PR, 2016(in Portuguese).
    13. 13)
      • 26. Baran, M. E., Wu, F. F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14011407.
    14. 14)
      • 7. Zidan, A., El-Saadany, E.F.: ‘A cooperative multiagent framework for self-healing mechanisms in distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 15251539.
    15. 15)
      • 25. Tarjan, R.: ‘Depth-first search and linear graph algorithms’. 12th Annual Symp. on Switching and Automata Theory, East Lansing, MI, USA, October 1971, pp. 114121.
    16. 16)
      • 6. Botea, A., Rintanen, J., Banerjee, D.: ‘Optimal reconfiguration for supply restoration with informed a* search’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 583593.
    17. 17)
      • 10. Abdel-Akher, M., Nor, K.M., Abdul-Rashid, A.H.: ‘Development of unbalanced three-phase distribution power flow analysis using sequence and phase components’. 12th Int. Middle East Power System Conf., Aswan, Egypt, March 2008, pp. 406411.
    18. 18)
      • 24. Güler, T., Gross, G.: ‘Detection of island formation and identification of causal factors under multiple line outages’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 505513.
    19. 19)
      • 15. Mashhour, E., Moghaddas-Tafreshi, S.M.: ‘Three-phase backward/forward power flow solution considering three-phase distribution transformers’. IEEE Int. Conf. on Industrial Technology, Gippsland, VIC, Australia, February 2009.
    20. 20)
      • 2. Li, J.: ‘Reconfiguration of power networks based on graph-theoretic algorithms’. Ph.D. dissertation, Iowa State University, Ames, IA, USA, 2010.
    21. 21)
      • 14. Lourenço, E.M., Salame, N., Costa, A.S.: ‘Fast decoupled steady-state solution for power networks modeled at the bus section level’. IEEE Bucharest Power Tech Conf., Bucharest, Romania, 28 June - 2 July 2009.
    22. 22)
      • 3. Kashem, M.A., Ganapathy, V., Jasmon, G.B.: ‘Network reconfiguration for enhancement of voltage stability in distribution networks’, IEE Proc., Gener. Transm. Distrib., 2000, 147, (3), p. 171.
    23. 23)
      • 8. Tsai, M.S.: ‘Development of an object-oriented service restoration expert system with load variations’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 219225.
    24. 24)
      • 21. Stott, B., Alsaç, O.: ‘Fast decoupled load flow’, IEEE Trans. Power App. Syst., 1974, PAS-93, (3), pp. 859869.
    25. 25)
      • 12. Yang, H., Wen, F., Wang, L., et al: ‘Newton-downhill algorithm for distribution power flow analysis’. 2nd IEEE Int. Conf. on Power and Energy, Johor Bahru, Malaysia, December 2008.
    26. 26)
      • 20. Tinney, W.F., Hart, C.E.: ‘Power flow solution by Newton's method’, IEEE Trans. Power Appar. Syst., 1967, PAS-86, (11), pp. 14491460.
    27. 27)
      • 9. Ou, T.C., Lin, W.M.: ‘A novel Z-matrix algorithm for distribution power flow solution’. 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June - 2 July 2009, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5886
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5886
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading