http://iet.metastore.ingenta.com
1887

Battery and backup generator sizing for a resilient microgrid under stochastic extreme events

Battery and backup generator sizing for a resilient microgrid under stochastic extreme events

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Owing to the recent power outages caused by extreme events, installing battery energy storage and backup generators is important to improve resiliency for a grid-tied microgrid. In the design stage, the event occurrence time and duration, which are highly uncertain and cannot be effectively predicted, may affect the needed battery and backup generator capacity but are usually assumed to be pre-determined in utility planning tools. This study investigates the optimal battery and backup generator sizing problem considering the stochastic event occurrence time and duration for the grid-tied microgrid under islanded operation. The reliability requirement is quantified by the mean value of the critical customer interruption time in each stochastic islanding time window (ITW), whose length is the duration and the centre is the occurrence time. The stochastic ITW constraint is then transformed to a probability-weighted expression to derive an equivalent Mixed Integer Linear Programming model. Numerical simulations on a realistic grid-tied PV-based microgrid demonstrate that the total cost is reduced by 11.5% considering the stochastic ITW, compared with the deterministic ITW under the same reliability requirement.

References

    1. 1)
      • 1. Parhizi, S., Lotfi, H., Khodaei, A., et al: ‘State of the art in research on microgrids: a review’, IEEE. Access., 2015, 3, pp. 890925.
    2. 2)
      • 2. Chen, S., Gooi, H.B., Wang, M.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    3. 3)
      • 3. Siler-Evans, K., Azevedo, I.L., Morgan, M.G.: ‘Marginal emissions factors for the US electricity system’, Environ. Sci. Technol., 2012, 46, (9), pp. 47424748.
    4. 4)
      • 4. ‘DE-FOA-0000997 microgrid research, development, and system design’. Available at http://nyssmartgrid.com/wp-content/uploads/DOE-Microgrid-FOA.pdf, accessed January 2014.
    5. 5)
      • 5. Dvorkin, Y., Fernandez-Blanco, R., Kirschen, D.S., et al: ‘Ensuring profitability of energy storage’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 611623.
    6. 6)
      • 6. Schittekatte, T., Stadler, M., Cardoso, G., et al: ‘The impact of short-term stochastic variability in solar irradiance on optimal microgrid design’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 16471656.
    7. 7)
      • 7. Yan, B., Luh, P.B., Warner, G., et al: ‘Operation and design optimization of microgrids with renewables’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (2), pp. 573585.
    8. 8)
      • 8. Chen, J., Zhang, W., Li, J., et al: ‘Optimal sizing for grid-tied microgrids with consideration of joint optimization of planning and operation’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 237248.
    9. 9)
      • 9. Dong, J., Gao, F., Guan, X., et al: ‘Storage-reserve sizing with qualified reliability for connected high renewable penetration micro-grid’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 732743.
    10. 10)
      • 10. Azizivahed, A., Naderi, E., Narimani, H., et al: ‘A new bi-objective approach to energy management in distribution networks with energy storage systems’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 5664.
    11. 11)
      • 11. Harsha, P., Dahleh, M.: ‘Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11641181.
    12. 12)
      • 12. Xiao, J., Bai, L., Li, F., et al: ‘Sizing of energy storage and diesel generators in an isolated microgrid using discrete Fourier transform (Dft)’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 907916.
    13. 13)
      • 13. Yuan, C., Illindala, M.S., Khalsa, A.S.: ‘Co-optimization scheme for distributed energy resource planning in community microgrids’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 13511360.
    14. 14)
      • 14. Zhou, B., Xu, D., Li, C., et al: ‘Multiobjective generation portfolio of hybrid energy generating station for mobile emergency power supplies’, IEEE Trans. Smart Grid, 2017 pp. 11, DOI: 10.1109/TSG.2017.2696982.
    15. 15)
      • 15. Alharbi, H., Bhattacharya, K.: ‘Stochastic optimal planning of battery energy storage systems for isolated microgrids’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 211227.
    16. 16)
      • 16. Li, G., Zhang, P., Luh, P.B., et al: ‘Risk analysis for distribution systems in the northeast us under wind storms’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 889898.
    17. 17)
      • 17. Liu, X., Shahidehpour, M., Li, Z., et al: ‘Microgrids for enhancing the power grid resilience in extreme conditions’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 589597.
    18. 18)
      • 18. Ma, S., Chen, B., Wang, Z.: ‘Resilience enhancement strategy for distribution systems under extreme weather events’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 14421451.
    19. 19)
      • 19. Gholami, A., Aminifar, F., Shahidehpour, M.: ‘Front lines against the darkness: enhancing the resilience of the electricity grid through microgrid facilities’, IEEE Electrification Mag., 2016, 4, (1), pp. 1824.
    20. 20)
      • 20. Panteli, M., Mancarella, P.: ‘The grid: stronger, bigger, smarter?: presenting a conceptual framework of power system resilience’, IEEE Power Energy Mag., 2015, 13, (3), pp. 5866.
    21. 21)
      • 21. Strbac, G., Hatziargyriou, N., Lopes, J.P., et al: ‘Microgrids: enhancing the resilience of the European megagrid’, IEEE Power Energy Mag., 2015, 13, (3), pp. 3543.
    22. 22)
      • 22. Wang, Y., Chen, C., Wang, J., et al: ‘Research on resilience of power systems under natural disasters – a review’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 16041613.
    23. 23)
      • 23. Li, Z., Shahidehpour, M., Aminifar, F., et al: ‘Networked microgrids for enhancing the power system resilience’, Proc. IEEE, 2017, 105, (7), pp. 12891310.
    24. 24)
      • 24. Chen, C., Wang, J., Ton, D.: ‘Modernizing distribution system restoration to achieve grid resiliency against extreme weather events: an integrated solution’, Proc. IEEE, 2017, 105, (7), pp. 12671288.
    25. 25)
      • 25. Che, L., Khodayar, M., Shahidehpour, M.: ‘Only connect: microgrids for distribution system restoration’, IEEE Power Energy Mag., 2014, 12, (1), pp. 7081.
    26. 26)
      • 26. Che, L., Shahidehpour, M.: ‘Dc microgrids: economic operation and enhancement of resilience by hierarchical control’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 25172526.
    27. 27)
      • 27. Gao, H., Chen, Y., Xu, Y., et al: ‘Dynamic load shedding for an islanded microgrid with limited generation resources’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 29532961.
    28. 28)
      • 28. Chen, C., Wang, J., Qiu, F., et al: ‘Resilient distribution system by microgrids formation after natural disasters’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 958966.
    29. 29)
      • 29. Gao, H., Chen, Y., Xu, Y., et al: ‘Resilience-oriented critical load restoration using microgrids in distribution systems’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28372848.
    30. 30)
      • 30. Wang, Z., Wang, J.: ‘Self-healing resilient distribution systems based on sectionalization into microgrids’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 31393149.
    31. 31)
      • 31. Xu, Y., Liu, C.-C., Schneider, K.P., et al: ‘Microgrids for service restoration to critical load in a resilient distribution system’, IEEE Trans. Smart Grid, 2018, 9, (1), pp. 426437.
    32. 32)
      • 32. Wang, Z., Wang, J.: ‘Service restoration based on AMI and networked MGs under extreme weather events’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 401408.
    33. 33)
      • 33. Farzin, H., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M.: ‘Enhancing power system resilience through hierarchical outage management in multi-microgrids’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28692879.
    34. 34)
      • 34. Gholami, A., Shekari, T., Aminifar, F., et al: ‘Microgrid scheduling with uncertainty: the quest for resilience’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 28492858.
    35. 35)
      • 35. Khodaei, A.: ‘Resiliency-oriented microgrid optimal scheduling’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 15841591.
    36. 36)
      • 36. Manshadi, S.D., Khodayar, M.E.: ‘Resilient operation of multiple energy carrier microgrids’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 22832292.
    37. 37)
      • 37. Li, J., Wu, L.: ‘Optimal operation for community based multi-party microgrid in grid-connected and islanded modes’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 756765.
    38. 38)
      • 38. ‘DOE microgrids program overview’. Available at https://www.nrel.gov/international/pdfs/5a_ton_reif15.pdf, accessed June 2015.
    39. 39)
      • 39. Ortmeyer, T., Wu, L., Li, J.: ‘Planning and design goals for resilient microgrids’. 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Minneapolis, MN, USA, September 2016 pp. 15.
    40. 40)
      • 40. Gamarra, C., Guerrero, J.M.: ‘Computational optimization techniques applied to microgrids planning: a review’, Renew. Sust. Energy Rev., 2015, 48, pp. 413424.
    41. 41)
      • 41. Liu, Y., Sioshansi, R., Conejo, A.J.: ‘Multistage stochastic investment planning with multiscale representation of uncertainties and decisions’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 781791.
    42. 42)
      • 42. ‘The role of microgrids in helping to advance the nation's energy system’. Available at https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/role-microgrids-helping, accessed July 2012.
    43. 43)
      • 43. Transmission and Distribution Committee: ‘IEEE guide for electric power distribution reliability indices’, IEEE Std 1366™-2003, 2003.
    44. 44)
      • 44. Dong, J., Gao, F., Guan, X., et al: ‘Storage sizing with peak-shaving policy for wind farm based on cyclic markov chain model’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 978989.
    45. 45)
      • 45. Glass, J., Melin, A.M., Starke, M.R., et al: ‘Chattanooga electric power board case study distribution automation’ (Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA, 2016).
    46. 46)
      • 46. ‘Tesla power pack design’. Available at https://www.tesla.com/powerpack/design#/.
    47. 47)
      • 47. ‘Combined heat and power technology fact sheet series’. Available at http://www.midwestchptap.org/features/PDF/CHP-GasTurbine.pdf, accessed December 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5883
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5883
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address