© The Institution of Engineering and Technology
The determination of the appropriate number and location of the phasor measurement units (PMUs) has raised the issue of the system monitoring as the main challenge. In this study, the problem of optimal PMU placement (OPMUP) is carried out in order to achieve a fully observable power system under normal and contingency conditions considering network expansion. For this purpose, network expansion is investigated considering two fixed and flexible PMU placement scenarios. The contingency index is introduced through the modelling process of N − 1 contingency states. This index is inserted as a new term in the objective function by compromising the observability confidence level and the number of PMUs. Other goals including minimising the number of PMUs, measurement channels and redundancy are considered along with the OPMUP process. The IEEE 57bus standard network in the MATLAB is studied during the expansion time horizon with the proposed algorithms to achieve the above goals.
References


1)

1. Fesharaki, F.H., Hooshmand, R.A., Khodabakhshian, A.: ‘Simultaneous optimal design of measurement and communication infrastructures in hierarchical structured WAMS’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 312–319.

2)

2. Von Meier, A., Stewart, E., McEachern, A., et al: ‘Precision microsynchrophasors for distribution systems: a summary of applications’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 2926–2936.

3)

3. Farajollahi, M., Shahsavari, A., Stewart, E., et al: ‘Locating the source of events in power distribution systems using microPMU data’, IEEE Trans. Power Syst., 2018, pp. 1–1, .

4)

4. Wang, X., Xie, X., Zhang, S., et al: ‘MicroPMU for distribution power lines’, CIREDOpen Access Proc. J., 2017, 1, pp. 333–337.

5)

5. Teimourzadeh, S., Aminifar, F., Shahidehpour, M.: ‘Contingencyconstrained optimal placement of microPMUs and smart meters in microgrids’, IEEE Trans. Smart Grid, 2018, pp. 1–1, .

6)

6. Wu, Z., Du, X., Gu, W., et al: ‘Optimal PMU placement considering load loss and relaying in distribution networks’, IEEE Access, 2018, 6, pp. 33645–33654.

7)

7. Dalali, M., Kazemi Karegar, H.: ‘Optimal PMU placement for full observability of the power network with maximum redundancy using modified binary cuckoo optimisation algorithm’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 2817–2824.

8)

8. Zhang, C., Jia, Y., Xu, Z., et al: ‘Optimal PMU placement considering state estimation uncertainty and voltage controllability’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 4465–4475.

9)

9. Ghosh, P.K., Chatterjee, S., Roy, B.K.S.: ‘Optimal PMU placement solution: graph theory and MCDMbased approach’, IET Gener. Transm. Distrib., 2017, 11, (13), pp. 3371–3380.

10)

10. Yang, Q., Jiang, L., Hao, W., et al: ‘PMU placement in electric transmission networks for reliable state estimation against false data injection attacks’, IEEE Internet of Things J., 2017, 4, (6), pp. 1978–1986.

11)

11. Mohammadi, M.B., Hooshmand, R.A., Fesharaki, F.H.: ‘A new approach for optimal placement of PMUs and their required communication infrastructure in order to minimize the cost of the WAMS’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 84–93.

12)

12. Bose, A., Clements, K.A.: ‘Realtime modeling of power networks’. Proc. IEEE Conf., 1987, , pp. 1607–1622.

13)

13. Nucera, R.R., Gilles, M.L.: ‘Observability analysis: a new topological algorithm’, IEEE Trans. Power Syst., 1991, 6, (2), pp. 466–475.

14)

14. Liao, C.S., Hsieh, T.J., Guo, X.C., et al: ‘Hybrid search for the optimal PMU placement problem on a power grid’, Eur. J. Oper. Res., 2015, 243, (3), pp. 985–994.

15)

15. Thomas, M.S., Ranjan, S., Bhaskar, N.: ‘Optimization of PMU placement by performing observability analysis’. Proc. IEEE Conf., 2014, pp. 1–5.

16)

16. Nosratabadi, S.M., Nasri, M.H., Modarresi, J.: ‘Double contingency consideration in phasor measurement unit placement using MSFLA based on Pareto method’. Proc. IEEE Conf., 2015, pp. 27–32.

17)

17. Dixit, A., Kaur, M.: ‘Harmonic source identification with optimal placement of PMUs’. Proc. IEEE Conf., 2016, pp. 1–6.

18)

18. Xie, N., Torelli, F., Bompard, E., et al: ‘A graph theory based methodology for optimal PMUs placement and multiarea power system state estimation’, Electr. Power Syst. Res., 2015, 119, pp. 25–33.

19)

19. Fesharaki, F.H., Hooshmand, R.A., Khodabakhshian, A.: ‘A new method for simultaneous optimal placement of PMUs and PDCs for maximizing data transmission reliability along with providing the power system observability’, Electr. Power Syst. Res., 2013, 100, pp. 43–54.

20)

20. Reddy, S.S.: ‘Solving the power system state estimation problem embedded with UPFC using glowworm swarm optimization algorithm’, Int. J. Appl. Eng. Res., 2017, 12, (10), pp. 2361–2369.

21)

21. Miljanić, Z., Djurović, I., Vujošević, I.: ‘Optimal placement of PMUs with limited number of channels’, Electr. Power Syst. Res., 2012, 90, pp. 93–98.

22)

22. Mouwafi, M.T., ElSehiemy, R.A., ElEla, A.A., et al: ‘Optimal placement of phasor measurement units with minimum availability of measuring channels in smart power systems’, Electr. Power Syst. Res., 2016, 141, pp. 421–431.

23)

23. Xia, N., Gooi, H.B., Chen, S.X., et al: ‘Redundancy based PMU placement in state estimation. Sustainable energy’, Grids Netw., 2015, 2, pp. 23–31.

24)

24. Rashidi, F., Abiri, E., Niknam, T., et al: ‘Optimal placement of PMUs with limited number of channels for complete topological observability of power systems under various contingencies’, Int. J. Electr. Power Energy Syst., 2015, 67, pp. 125–137.

25)

25. Azizi, S., Dobakhshari, A.S., Sarmadi, S.A.N., et al: ‘Optimal PMU placement by an equivalent linear formulation for exhaustive search’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 174–182.

26)

26. Tai, X., Marelli, D., Rohr, E., et al: ‘Optimal PMU placement for power system state estimation with random component outages’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 35–42.

27)

27. Firouzjah, K.G., Sheikholeslami, A., Barforoushi, T.: ‘Reliability improvement of power system observability with minimum phasor measurement units’, IET. Gener. Transm. Distrib., 2013, 7, (2), pp. 118–129.

28)

28. Firouzjah, K.G., Sheikholeslami, A., Barforoushi, T.: ‘Multiobjective allocation of measuring system based on binary particle swarm optimization’, Front. Electr. Electron. Eng., 2012, 7, (4), pp. 399–415.

29)

29. Jelodar, M.T., Fini, A.S.: ‘Probabilistic PMU placement considering topological change in high voltage substations’, Int. J. Electr. Power Energy Syst., 2016, 82, pp. 303–313.

30)

30. Eldery, M.A., ElSaadany, E.F., Salama, M.M., et al: ‘A novel power quality monitoring allocation algorithm’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 768–777.

31)

31. Aminifar, F., Khodaei, A., FotuhiFiruzabad, M., et al: ‘Contingencyconstrained PMU placement in power networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 516–523.

32)

32. Azizi, S., Gharehpetian, G.B., Dobakhshari, A.S.: ‘Optimal integration of phasor measurement units in power systems considering conventional measurements’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 1113–1121.

33)

33. Enshaee, A., Hooshmand, R.A., Fesharaki, F.H.: ‘A new method for optimal placement of phasor measurement units to maintain full network observability under various contingencies’, Electr. Power Syst. Res., 2012, 89, pp. 1–10.

34)

34. Mahaei, S.M., Hagh, M.T.: ‘Minimizing the number of PMUs and their optimal placement in power systems’, Electr. Power Syst. Res., 2012, 83, (1), pp. 66–72.

35)

35. Mazhari, S.M., Monsef, H., Lesani, H., et al: ‘A multiobjective PMU placement method considering measurement redundancy and observability value under contingencies’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 2136–2146.

36)

36. AlinejadBeromi, Y., Ahmadi, A., Soleymanpour, H.R.: ‘Optimal PMU placement considering contingencies by using a hybrid discrete particle swarm optimization technique’, Int. Rev. Electr. Eng., 2011, 6, (4), pp. 1927–1938.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietgtd.2018.5874
Related content
content/journals/10.1049/ietgtd.2018.5874
pub_keyword,iet_inspecKeyword,pub_concept
6
6