access icon free Optimal allocation of distributed generation for planning master–slave controlled microgrids

This study proposes a novel problem formulation for a planning distributed generation (DG) allocation for microgrids, using the master–slave approach. In the previous planning studies, all DGs have the same operating mode (e.g. operate at unity power factor). For master–slave controlled microgrid, DGs have two possible operating modes: master (non-unity power factor operation) and slave (unity power factor operation). For planning a master–slave controlled microgrid, in addition to DG siting, the optimal DG operating mode is determined by including a new set of constraints in the planning problem. Thus, the proposed formulation is capable of determining the optimal location of the master and slave DGs with the main objective of minimizing the microgrid's energy losses. The proposed model is formulated as a mixed-integer non-linear programming problem; incorporated into an optimal power flow framework and tested on the IEEE 38-bus systems considering a variable load profile. In addition to this, sensitivity analysis is carried for case studies with different load types and reactive power injection by the slave DGs in the system (e.g. operate at fixed non-unity power factor). The proposed approach can serve as an efficient tool for utility operators for planning microgrids.

Inspec keywords: sensitivity analysis; load flow; power generation control; integer programming; optimisation; power generation reliability; nonlinear programming; power distribution control; power factor; distributed power generation; power distribution reliability; linear programming

Other keywords: novel problem formulation; possible operating modes; previous planning studies; planning distributed generation; slave DGs; optimisation problem; fixed nonunity power factor; master–slave approach; optimal allocation; optimal DG operating mode; mixed-integer nonlinear programming problem; planning problem; unity power factor operation; utility operators; master–slave controlled microgrid; planning master–slave controlled microgrids; planning microgrids; nonunity power factor operation; optimal power flow framework

Subjects: Power system control; Distribution networks; Optimisation techniques; Optimisation techniques; Distributed power generation; Power system management, operation and economics; Reliability; Control of electric power systems

References

    1. 1)
      • 10. Akorede, M.F., Hizam, H., Aris, I., et al: ‘Effective method for optimal allocation of distributed generation units in meshed electric power systems’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 276287.
    2. 2)
      • 7. Khomami, H.P., Javidi, M.H.: ‘Energy management of smart microgrid in presence of renewable energy sources based on real-time pricing’. 2014Smart Grid Conf. (SGC), Tehran, Iran, 2014, pp. 16.
    3. 3)
      • 18. Khodaei, A., Bahramirad, S., Shahidehpour, M.: ‘Microgrid planning under uncertainty’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24172425.
    4. 4)
      • 12. Nikolakakos, I.P., Zeineldin, H.H., El Moursi, M.S., et al: ‘Stability evaluation of interconnected multi-inverter microgrids through critical clusters’, IEEE Trans. Power Syst., 2015, PP, (99), pp. 113.
    5. 5)
      • 3. Wang, C., Nehrir, M.H.: ‘Analytical approaches for optimal placement of distributed generation sources in power systems’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20682076.
    6. 6)
      • 39. IEEE standard for interconnecting distributed resources with electric power systems’, IEEE Std 1547-2003, 2003.
    7. 7)
      • 40. Shan, W.C., Lin, L.X., Li, G., et al: ‘A seamless operation mode transition control strategy for a microgrid based on master-slave control’. 2012 31st Chinese Control Conf. (CCC), Hefei, People's Republic of China, 2012, pp. 67686775.
    8. 8)
      • 27. Atwa, Y.M., El Saadany, E.F.: ‘Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems’, IET Renew. Power Gener., 2011, 5, (1), pp. 7988.
    9. 9)
      • 2. Ameli, A., Bahrami, S., Khazaeli, F., et al: ‘A multiobjective particle swarm optimization for sizing and placement of dgs from dg owner's and distribution company's viewpoints’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 18311840.
    10. 10)
      • 31. Kwofie, E.A., Mensah, G., Anto, E.K.: ‘Determination of the optimal power factor at which dg pv should be operated’. 2017 IEEE PES PowerAfrica, Accra, Ghana, 2017, pp. 391395.
    11. 11)
      • 23. Arefifar, S.A., Mohamed, Y.A.R.I.: ‘Probabilistic optimal reactive power planning in distribution systems with renewable resources in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 58305839.
    12. 12)
      • 21. Moradi, M.H., Eskandari, M., Mahdi Hosseinian, S.: ‘Operational strategy optimization in an optimal sized smart microgrid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 10871095.
    13. 13)
      • 15. Eid, B.M., Rahim, N.A., Selvaraj, J., et al: ‘Control methods and objectives for electronically coupled distributed energy resources in microgrids: A review’, IEEE Syst. J., 2014, PP, (99), pp. 113.
    14. 14)
      • 13. Tang, X., Deng, W., Qi, Z.: ‘Investigation of the dynamic stability of microgrid’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 698706.
    15. 15)
      • 35. Singh, B., Payasi, R., Sharma, J.: ‘Effects of dg operating power factor on its location and size by using ga in distribution systems’. In: ‘Handbook of distributed generation’ (Springer, New York, NY, USA, 2017), pp. 459501.
    16. 16)
      • 24. Arefifar, S.A., Mohamed, Y.A.R.I.: ‘Dg mix, reactive sources and energy storage units for optimizing microgrid reliability and supply security’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18351844.
    17. 17)
      • 30. Huy, P.D., Ramachandaramurthy, V.: ‘Determination of optimal location, sizing and power factor of grid-connected solar pv plant’, Appl. Mech. Mater, 2015, 785, pp. 566570.
    18. 18)
      • 11. Singh, D., Singh, D., Verma, K.S.: ‘Multiobjective optimization for dg planning with load models’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 427436.
    19. 19)
      • 41. Kennedy, J., Eberhart, R.C.: ‘A discrete binary version of the particle swarm algorithm’. 1997 IEEE Int. Conf. on Systems, Man, and Cybernetics Computational Cybernetics and Simulation, Orlando, FL, USA, USA, 1997, vol. 5, pp. 41044108.
    20. 20)
      • 29. Mahmud, M.A., Hossain, M.J., Pota, H.R., et al: ‘Voltage control of distribution networks with distributed generation using reactive power compensation’. IECON 2011 – 37th Annual Conf. of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 2011, pp. 985990.
    21. 21)
      • 34. Sanjay, R., Jayabarathi, T., Raghunathan, T., et al: ‘Optimal allocation of distributed generation using hybrid grey wolf optimizer’, IEEE Access, 2017, 5, pp. 1480714818.
    22. 22)
      • 14. Babazadeh, M., Karimi, H.: ‘A robust two-degree-of-freedom control strategy for an islanded microgrid’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 13391347.
    23. 23)
      • 5. Grisales, L.F., Grajales, A., Montoya, O.D., et al: ‘Optimal location and sizing of distributed generators using a hybrid methodology and considering different technologies’. 2015 IEEE 6th Latin American Symp. on Circuits Systems (LASCAS), Montevideo, Uruguay, 2015, pp. 14.
    24. 24)
      • 32. Ausavanop, O., Chanhome, A., Chaitusaney, S.: ‘An optimal allocation of distributed generation and voltage control devices for voltage regulation considering renewable energy uncertainty’, IEEJ Trans. Electr. Electron. Eng., 2014, 9, (S1), pp. S17S27.
    25. 25)
      • 1. Lasseter, R.H., Paigi, P.: ‘Microgrid: a conceptual solution’. 2004 IEEE 35th Annual Power Electronics Specialists Conf., 2004 PESC 04, Aachen, Germany, 2004, vol. 6, pp. 42854290.
    26. 26)
      • 4. Abu Mouti, F.S., El Hawary, M.E.: ‘Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 20902101.
    27. 27)
      • 16. He, J., Li, Y.W., Wang, R., et al: ‘Analysis and mitigation of resonance propagation in grid-connected and islanding microgrids’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 7081.
    28. 28)
      • 25. Peas Lopes, J.A., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    29. 29)
      • 42. Singh, D., Misra, R.K., Singh, D.: ‘Effect of load models in distributed generation planning’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 22042212.
    30. 30)
      • 9. Muttaqi, K.M., Le, A.D.T., Negnevitsky, M., et al: ‘An algebraic approach for determination of dg parameters to support voltage profiles in radial distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 13511360.
    31. 31)
      • 20. Wang, Z., Chen, B., Wang, J., et al: ‘Robust optimization based optimal dg placement in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 21732182.
    32. 32)
      • 22. Mitra, J., Vallem, M.R., Singh, C.: ‘Optimal deployment of distributed generation using a reliability criterion’, IEEE Trans. Ind. Appl., 2016, PP, (99), pp. 11.
    33. 33)
      • 8. Rambabu, T., Prasad, P.V.: ‘Optimal placement and sizing of dg based on power stability index in radial distribution system’. 2014 Int. Conf. on Smart Electric Grid (ISEG), Guntur, India, 2014, pp. 15.
    34. 34)
      • 37. Alkaabi, S.S., Zeineldin, H.H., Khadkikar, V.: ‘Planning active distribution networks considering multi-dg configurations’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 785793.
    35. 35)
      • 33. Kamigaich, H., Shinya, K., Nagata, T.: ‘A coordinated voltage control of lrt and dg power factors in distribution networks’. 2016 IEEE Innovative Smart Grid Technologies – Asia (ISGT-Asia), Melbourne, VIC, Australia, 2016, pp. 10891093.
    36. 36)
      • 17. Micallef, A., Apap, M., Spiteri Staines, C., et al: ‘Mitigation of harmonics in grid-connected and islanded microgrids via virtual admittances and impedances’, IEEE Trans. Smart Grid, 2015, PP, (99), pp. 111.
    37. 37)
      • 6. Moradi, M.H., Abedinie, M.: ‘A combination of genetic algorithm and particle swarm optimization for optimal dg location and sizing in distribution systems’. IPEC, 2010 Conf. Proc., Singapore, Singapore, 2010, pp. 858862.
    38. 38)
      • 36. Distributed generation and sustainable electrical energy centre. United Kingdom generic distribution system (UKGDS)’. Available at http://www.sedg.ac.uk.
    39. 39)
      • 19. Ganguly, S., Samajpati, D.: ‘Distributed generation allocation on radial distribution networks under uncertainties of load and generation using genetic algorithm’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 688697.
    40. 40)
      • 26. Caldognetto, T., Tenti, P.: ‘Microgrids operation based on master-slave cooperative control’, IEEE J. Sel. Top. Power Electron., 2014, 2, (4), pp. 10811088.
    41. 41)
      • 38. Ghanbari, N., Mokhtari, H., Bhattacharya, S.: ‘Optimizing operation indices considering different types of distributed generation in microgrid applications’, Energies, 2018, 11, (4), p. 894.
    42. 42)
      • 28. Atwa, Y.M., El Saadany, E.F., Salama, M.M.A., et al: ‘Optimal renewable resources mix for distribution system energy loss minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360370.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5872
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5872
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading