access icon free Robust hierarchical damping controller for uncertain wide-area power systems

This study develops a new robust hierarchical predictive sliding mode controller to damp the wide-area electromechanical oscillations in an uncertain wide-area power system. The coefficient matrices of wide-area systems are often sparse matrices which cause the inverse calculation of them very complex or impossible. In the suggested approach, first the entire system is divided into several small subsystems with non-sparse matrices and lower order; then a new predictive sliding mode controller with robust reaching law is designed to provide the optimal performance and robustness to uncertainties and external disturbances. Also, the gradient of interaction errors is employed for coordination of overall wide-area system. The capability and efficiency of the developed control framework is verified through numerical simulations on an uncertain power grid with interconnected multi-areas, for various cases of perturbations and parameters’ uncertainties. Simulation studies illustrate the effectiveness of the suggested method to improve the wide-area power grid damping in terms of acceptable robustness to external disturbances and system's parameter variations, in comparison with two other methods which are adopted from the literature.

Inspec keywords: sparse matrices; power system stability; robust control; oscillations; predictive control; power system interconnection; power grids; power system control; variable structure systems; damping; control system synthesis; uncertain systems

Other keywords: robust hierarchical damping controller; uncertain wide-area power system; uncertain power grid; wide-area electromechanical oscillations; multiareas interconnection; sparse matrices; optimal performance; wide-area power grid damping; robust hierarchical predictive sliding mode controller; interaction errors; robust reaching law; systems parameter variations; nonsparse matrices

Subjects: Stability in control theory; Control system analysis and synthesis methods; Algebra; Optimal control; Power system control; Control of electric power systems; Multivariable control systems; Power system management, operation and economics; Algebra

References

    1. 1)
      • 5. Zhao, P., Yao, W., Wang, S., et al: ‘Decentralized nonlinear synergetic power system stabilizers design for power system stability enhancement’, Int. Trans. Electr. Energy Syst., 2014, 24, pp. 13561368.
    2. 2)
      • 4. Wang, D., Glavic, M., Wehenkel, L.: ‘Comparison of centralized, distributed and hierarchical model predictive control schemes for electromechanical oscillations damping in wide-area power systems’, Electr. Power Energy Syst., 2014, 58, pp. 3241.
    3. 3)
      • 3. Bijami, E., Askari, J., Farsangi, M.M.: ‘Design of stabilizing signals for power system damping using generalized predictive control optimized by a new hybrid shuffled frog leaping algorithm’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 10361045.
    4. 4)
      • 14. Yao, G., Lu, Z., Wang, Y., et al: ‘A virtual synchronous generator based hierarchical control scheme of distributed generation systems’, Energies, 2017, 10, pp. 123.
    5. 5)
      • 18. Sadati, N., Momeni, A.R.: ‘Nonlinear optimal control of two-level wide-area systems; part I – interaction prediction principle’. Proc. IEEE Int. Conf. on Industrial Electronics and Control Applications, Quito, Ecuador, November 2005.
    6. 6)
      • 1. Mohammadpour, J., Grigoriadis, K.M.: ‘Efficient modeling and control of large-scale systems’ (Springer, New York, USA, 2010).
    7. 7)
      • 11. Feng, X., Shekhar, A., Yang, F., et al: ‘Comparison of hierarchical control and distributed control for microgrid’, Electr. Power Compon. Syst., 2017, 45, (10), pp. 10431056.
    8. 8)
      • 23. Bartoszewicz, A.: ‘Discrete-Time quasi-sliding- mode control strategies’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 633637.
    9. 9)
      • 16. Gabin, W., Zambrano, D., Camacho, E.F.: ‘Sliding mode predictive control of a solar air conditioning plant’, Control Eng. Pract., 2009, 17, pp. 652663.
    10. 10)
      • 25. Wang, J., Shi, K., Huang, Q., et al: ‘Stochastic switched sample d-data control for synchronization of delayed chaotic neural networks with packet dropout’, Appl. Math. Comput., 2018, 335, pp. 211230.
    11. 11)
      • 19. Bhadu, M., Senroy, N., Janardhanan, S.: ‘Discrete wide-area power system damping controller using periodic output feedback’, Electr. Power Compon. Syst., 2016, 44, (17), pp. 18921903.
    12. 12)
      • 2. Jamshidi, M.: ‘Large-area systems: modeling, control and fuzzy logic’, in ‘Volume 8 Prentice Hall series on environmental and intelligent manufacturing systems’ (Prentice Hall, New Jersey, USA, 1997).
    13. 13)
      • 24. Shi, K., Tang, Y, Liu, X., et al: ‘Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation’, ISA Trans., 2017, 66, pp. 185199.
    14. 14)
      • 22. Dehghani, M., Nikravesh, S.K.Y.: ‘State-Space model parameter identification in large-scale power systems’, IEEE Trans. Power Syst., 2008, 23, pp. 14491457.
    15. 15)
      • 6. Blessy, J., Arindam, G., Firuz, Z., et al: ‘Improved control strategy for accurate load power sharing in an autonomous microgrid’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 43844390.
    16. 16)
      • 8. Bijami, E., Farsangi, M.M., Lee, K.Y.: ‘Power system stabilization using decentralized hierarchical generalized predictive control’. Proc. IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 2013, pp. 15.
    17. 17)
      • 9. Darabian, M., Jalilvand, A.: ‘Predictive control strategy to improve stability of DFIG-based wind generation connected to a large scale power system’, Int. Trans. Electr. Energy Syst., 2017, 27, (5), pp. 119.
    18. 18)
      • 13. Edlund, K., Bendtsen, J.D., Jørgensen, J.B.: ‘Hierarchical model-based predictive control of a power plant portfolio’, Control Eng. Pract., 2011, 19, pp. 11261136.
    19. 19)
      • 21. Chow, J.: ‘Power system toolbox: a set of coordinated m-files for use with MATLAB’ (Cherry Tree Scientific Software, ON, Canada, 1997).
    20. 20)
      • 10. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., et al: ‘Distributed MPC strategies with application to power system automatic generation control’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11921206.
    21. 21)
      • 7. Chompoobutrgoo, Y., Vanfretti, L., Ghandhari, M.: ‘Survey on power system stabilizers control and their prospective applications for power system damping using Synchrophasor-based wide-area systems’, Eur. Trans. Electr. Power, 2011, 21, pp. 20982111.
    22. 22)
      • 12. Marinovici, L.D., Lian, J., Kalsi, K., et al: ‘Distributed hierarchical control architecture for transient dynamics improvement in power systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 30653074.
    23. 23)
      • 17. Sadati, N., Ramezani, M.H.: ‘Novel interaction prediction approach to hierarchical control of wide-area systems’, IET Control Theory Applic., 2010, 4, (2), pp. 228243.
    24. 24)
      • 15. Alizadeh, E., Birjandi, A.M., Hamzeh, M.: ‘Decentralized power sharing control strategy in LV microgrids under unbalanced load conditions’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16131623.
    25. 25)
      • 20. Gao, W., Wang, Y., Homaifa, A.: ‘Discrete-time variable structure control systems’, IEEE Trans. Ind. Electron., 1995, 42, (2), pp. 117122.
    26. 26)
      • 26. Shi, K., Tang, Y., Zhong, S., et al: ‘Non-fragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process’, Int. J. Robust Nonlinear Control, 2017, 28, (5), pp. 16931714.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5853
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5853
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading