Robust hierarchical damping controller for uncertain wide-area power systems

Robust hierarchical damping controller for uncertain wide-area power systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study develops a new robust hierarchical predictive sliding mode controller to damp the wide-area electromechanical oscillations in an uncertain wide-area power system. The coefficient matrices of wide-area systems are often sparse matrices which cause the inverse calculation of them very complex or impossible. In the suggested approach, first the entire system is divided into several small subsystems with non-sparse matrices and lower order; then a new predictive sliding mode controller with robust reaching law is designed to provide the optimal performance and robustness to uncertainties and external disturbances. Also, the gradient of interaction errors is employed for coordination of overall wide-area system. The capability and efficiency of the developed control framework is verified through numerical simulations on an uncertain power grid with interconnected multi-areas, for various cases of perturbations and parameters’ uncertainties. Simulation studies illustrate the effectiveness of the suggested method to improve the wide-area power grid damping in terms of acceptable robustness to external disturbances and system's parameter variations, in comparison with two other methods which are adopted from the literature.


    1. 1)
      • 1. Mohammadpour, J., Grigoriadis, K.M.: ‘Efficient modeling and control of large-scale systems’ (Springer, New York, USA, 2010).
    2. 2)
      • 2. Jamshidi, M.: ‘Large-area systems: modeling, control and fuzzy logic’, in ‘Volume 8 Prentice Hall series on environmental and intelligent manufacturing systems’ (Prentice Hall, New Jersey, USA, 1997).
    3. 3)
      • 3. Bijami, E., Askari, J., Farsangi, M.M.: ‘Design of stabilizing signals for power system damping using generalized predictive control optimized by a new hybrid shuffled frog leaping algorithm’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 10361045.
    4. 4)
      • 4. Wang, D., Glavic, M., Wehenkel, L.: ‘Comparison of centralized, distributed and hierarchical model predictive control schemes for electromechanical oscillations damping in wide-area power systems’, Electr. Power Energy Syst., 2014, 58, pp. 3241.
    5. 5)
      • 5. Zhao, P., Yao, W., Wang, S., et al: ‘Decentralized nonlinear synergetic power system stabilizers design for power system stability enhancement’, Int. Trans. Electr. Energy Syst., 2014, 24, pp. 13561368.
    6. 6)
      • 6. Blessy, J., Arindam, G., Firuz, Z., et al: ‘Improved control strategy for accurate load power sharing in an autonomous microgrid’, IET Gener. Transm. Distrib., 2017, 11, (17), pp. 43844390.
    7. 7)
      • 7. Chompoobutrgoo, Y., Vanfretti, L., Ghandhari, M.: ‘Survey on power system stabilizers control and their prospective applications for power system damping using Synchrophasor-based wide-area systems’, Eur. Trans. Electr. Power, 2011, 21, pp. 20982111.
    8. 8)
      • 8. Bijami, E., Farsangi, M.M., Lee, K.Y.: ‘Power system stabilization using decentralized hierarchical generalized predictive control’. Proc. IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, Canada, 2013, pp. 15.
    9. 9)
      • 9. Darabian, M., Jalilvand, A.: ‘Predictive control strategy to improve stability of DFIG-based wind generation connected to a large scale power system’, Int. Trans. Electr. Energy Syst., 2017, 27, (5), pp. 119.
    10. 10)
      • 10. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., et al: ‘Distributed MPC strategies with application to power system automatic generation control’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11921206.
    11. 11)
      • 11. Feng, X., Shekhar, A., Yang, F., et al: ‘Comparison of hierarchical control and distributed control for microgrid’, Electr. Power Compon. Syst., 2017, 45, (10), pp. 10431056.
    12. 12)
      • 12. Marinovici, L.D., Lian, J., Kalsi, K., et al: ‘Distributed hierarchical control architecture for transient dynamics improvement in power systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 30653074.
    13. 13)
      • 13. Edlund, K., Bendtsen, J.D., Jørgensen, J.B.: ‘Hierarchical model-based predictive control of a power plant portfolio’, Control Eng. Pract., 2011, 19, pp. 11261136.
    14. 14)
      • 14. Yao, G., Lu, Z., Wang, Y., et al: ‘A virtual synchronous generator based hierarchical control scheme of distributed generation systems’, Energies, 2017, 10, pp. 123.
    15. 15)
      • 15. Alizadeh, E., Birjandi, A.M., Hamzeh, M.: ‘Decentralized power sharing control strategy in LV microgrids under unbalanced load conditions’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16131623.
    16. 16)
      • 16. Gabin, W., Zambrano, D., Camacho, E.F.: ‘Sliding mode predictive control of a solar air conditioning plant’, Control Eng. Pract., 2009, 17, pp. 652663.
    17. 17)
      • 17. Sadati, N., Ramezani, M.H.: ‘Novel interaction prediction approach to hierarchical control of wide-area systems’, IET Control Theory Applic., 2010, 4, (2), pp. 228243.
    18. 18)
      • 18. Sadati, N., Momeni, A.R.: ‘Nonlinear optimal control of two-level wide-area systems; part I – interaction prediction principle’. Proc. IEEE Int. Conf. on Industrial Electronics and Control Applications, Quito, Ecuador, November 2005.
    19. 19)
      • 19. Bhadu, M., Senroy, N., Janardhanan, S.: ‘Discrete wide-area power system damping controller using periodic output feedback’, Electr. Power Compon. Syst., 2016, 44, (17), pp. 18921903.
    20. 20)
      • 20. Gao, W., Wang, Y., Homaifa, A.: ‘Discrete-time variable structure control systems’, IEEE Trans. Ind. Electron., 1995, 42, (2), pp. 117122.
    21. 21)
      • 21. Chow, J.: ‘Power system toolbox: a set of coordinated m-files for use with MATLAB’ (Cherry Tree Scientific Software, ON, Canada, 1997).
    22. 22)
      • 22. Dehghani, M., Nikravesh, S.K.Y.: ‘State-Space model parameter identification in large-scale power systems’, IEEE Trans. Power Syst., 2008, 23, pp. 14491457.
    23. 23)
      • 23. Bartoszewicz, A.: ‘Discrete-Time quasi-sliding- mode control strategies’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 633637.
    24. 24)
      • 24. Shi, K., Tang, Y, Liu, X., et al: ‘Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation’, ISA Trans., 2017, 66, pp. 185199.
    25. 25)
      • 25. Wang, J., Shi, K., Huang, Q., et al: ‘Stochastic switched sample d-data control for synchronization of delayed chaotic neural networks with packet dropout’, Appl. Math. Comput., 2018, 335, pp. 211230.
    26. 26)
      • 26. Shi, K., Tang, Y., Zhong, S., et al: ‘Non-fragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process’, Int. J. Robust Nonlinear Control, 2017, 28, (5), pp. 16931714.

Related content

This is a required field
Please enter a valid email address