Lyapunov-based hybrid model predictive control for energy management of microgrids

Lyapunov-based hybrid model predictive control for energy management of microgrids

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an advanced control structure aimed at the optimal economic energy management of a renewable energy-based microgrid. This control scheme is applied to energy optimisation in a microgrid with non-dispatchable renewable sources, such as photovoltaic and wind power generation, as well as dispatchable sources, as distributed generators, hybrid storage systems compound by battery bank, supercapacitors, hydrogen storage unit, and one electric vehicle charging station. The proposed controller consists of a Lyapunov-based hybrid model predictive control based on mixed logical dynamical (MLD) framework. The main contribution of the proposed technique is the assurance of the closed-loop stability and recursive feasibility, by a novel approach focused on MLD models, using ellipsoidal terminal constraints and the Lyapunov decreasing condition. Finally, simulation tests under different operational conditions are performed and the attained results have shown the safe and reliable operation of the proposed control algorithm compared to existing and well-known energy management techniques.


    1. 1)
      • 1. Hao, R., Jiang, Z., Ai, Q., et al: ‘Hierarchical optimisation strategy in microgrid based on the consensus of multi-agent system’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 24442451.
    2. 2)
      • 2. Ranga, V.P.S.R.V., Sesha, S., Kesanakurthy, S.S.: ‘Model predictive control approach for frequency and voltage control of standalone micro-grid’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 34053413.
    3. 3)
      • 3. Qiu, J., Zhao, J., Zheng, Y., et al: ‘Optimal allocation of BESS and MT in a microgrid’, IET Gener. Transm. Distrib., 2018, 12, (9), pp. 19881997.
    4. 4)
      • 4. Olivares, D.E., Mehrizi Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    5. 5)
      • 5. Garcia Torres, F., Bordons, C., Ridao, M.A.: ‘Optimal economic schedule for a network of microgrids with hybrid energy storage system using distributed model predictive control’, IEEE Trans. Ind. Electron., 2018, doi: 10.1109/TIE.2018.2826476.
    6. 6)
      • 6. Garcia Torres, F., Valverde, L., Bordons, C.: ‘Optimal load sharing of hydrogen-based microgrids with hybrid storage using model-predictive control’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 49194928.
    7. 7)
      • 7. Garcia Torres, F., Bordons, C.: ‘Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 51955207.
    8. 8)
      • 8. Mendes, P.R.C., Isorna, L.V., Bordons, C., et al: ‘Energy management of an experimental microgrid coupled to a v2g system’, J. Power Sources, 2016, 327, pp. 702713.
    9. 9)
      • 9. Parisio, A., Rikos, E., Glielmo, L.: ‘A model predictive control approach to microgrid operation optimization’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 18131827.
    10. 10)
      • 10. Clarke, W.C., Manzie, C., Brear, M.J.: ‘An economic mpc approach to microgrid control’. 2016 Australian Control Conf. (AuCC), Newcastle, NSW, Australia, November 2016, pp. 276281.
    11. 11)
      • 11. Hernández Hernández, C., Rodríguez, F., Moreno, J.C., et al: ‘The comparison study of short-term prediction methods to enhance the model predictive controller applied to microgrid energy management’, Energies, 2017, 10, (7), p. 884.
    12. 12)
      • 12. Alavi, F., Lee, E.P., van de Wouw, N., et al: ‘Fuel cell cars in a microgrid for synergies between hydrogen and electricity networks’, Appl. Energy, 2017, 192, pp. 296304.
    13. 13)
      • 13. Pereira, M., Limon, D., de la Peña, D.M., et al: ‘Periodic economic control of a nonisolated microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 52475255.
    14. 14)
      • 14. Mendes, P.R., Maestre, J.M., Bordons, C., et al: ‘A practical approach for hybrid distributed MPC’, J. Process Control, 2017, 55, pp. 3041.
    15. 15)
      • 15. Di Cairano, S., Heemels, W.M.H., Lazar, M., et al: ‘Stabilizing dynamic controllers for hybrid systems: a hybrid control lyapunov function approach’, IEEE Trans. Autom. Control, 2014, 59, (10), pp. 26292643.
    16. 16)
      • 16. Torrisi, F.D., Bemporad, A.: ‘Hysdel-a tool for generating computational hybrid models for analysis and synthesis problems’, IEEE Trans. Control Syst. Technol., 2004, 12, (2), pp. 235249.
    17. 17)
      • 17. Del Real, A., Galus, M., Bordons, C., et al: ‘Optimal power dispatch of energy networks including external power exchanges’. Control Conf. (ECC), 2009 European IEEE, Budapest, Hungary, August 2009, pp. 36163621.
    18. 18)
      • 18. Valverde, L., Rosa, F., Bordons, C.: ‘Design, planning and management of a hydrogen-based microgrid’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 13981404.
    19. 19)
      • 19. Borrelli, F., Bemporad, A., Morari, M.: ‘Predictive control for linear and hybrid systems’ (Cambridge University Press, Cambridge, UK, 2017).
    20. 20)
      • 20. Bemporad, A., Morari, M.: ‘Control of systems integrating logic, dynamics, and constraints’, Automatica, 1999, 35, (3), pp. 407427.
    21. 21)
      • 21. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, UK, 2004).
    22. 22)
      • 22. Zhao, Y., Liu, S.: ‘Global optimization algorithm for mixed integer quadratically constrained quadratic program’, J. Comput. Appl. Math., 2017, 319, pp. 159169.
    23. 23)
      • 23. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 29672986.
    24. 24)
      • 24. ‘Sonda – national environmental data organization system’. Available from:

Related content

This is a required field
Please enter a valid email address