Under-impedance load shedding: a new preventive action against voltage instability

Under-impedance load shedding: a new preventive action against voltage instability

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Load dynamics play an important role in the voltage stability. Grid-side short-circuit faults may induce severe voltage drops at motor load buses. Once the fault is cleared, depending upon its clearing time, the load bus voltage may either return to its permissible range or degrade gradually until it collapses. From the short-term voltage stability viewpoint, the former is a stable phenomenon, while the latter is an unstable circumstance and the load should be shed in order to prevent voltage instability from being spread over the grid. To cope with this problem, this study presents a new under-impedance load shedding (UILS) scheme. A quadratic distance relay is used as the load shedding element. The trajectory of load impedance is monitored by the proposed UILS relay. Following the grid-side fault clearance, if the impedance trajectory enters the load shedding zone and remains inside it for a predefined time, voltage instability is detected and the load is curtailed by the UILS relay. The proposed approach is tested on various networks, including a real power system model. The obtained results approve the efficiency of the proposed UILS scheme.


    1. 1)
      • 1. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    2. 2)
      • 2. Cutsem, T.V., Vournas, C.: ‘Voltage stability of electric power systems’ (Springer, New York, NY, USA, 2008, 2nd edn.).
    3. 3)
      • 3. Xue, Y., Xu, T., Liu, B., et al: ‘Quantitative assessments for transient voltage security’, IEEE Trans. Power Syst., 2000, 15, (3), pp. 10771083.
    4. 4)
      • 4. Koessler, R.J., Qiu, W., Patel, M., et al: ‘Voltage stability study of the PJM system following extreme disturbances’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 285293.
    5. 5)
      • 5. Mahari, A., Seyedi, H.: ‘A fast online load shedding method for mitigating FIDVR based on novel stability index’. Proc. 21th Iranian Conf. on Electrical Engineering (ICEE), Mashhad, Iran, May 2013, pp. 16.
    6. 6)
      • 6. Gomez, J.C., Morcos, M.M., Reineri, C.A., et alBehavior of induction motor due to voltage sags and short interruptions’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 434440.
    7. 7)
      • 7. Lu, N., Xie, Y., Huang, Z.: ‘Air conditioner compressor performance model’ (Pacific Northwest National Laboratory, Washington, DC, USA, 2008).
    8. 8)
      • 8. Kawabe, K., Tanaka, K.: ‘Analytical method for short-term voltage stability using the stability boundary in the P-V plane’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 30413047.
    9. 9)
      • 9. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA, 1994).
    10. 10)
      • 10. Milosevic, M., Begovic, M.: ‘Voltage-stability protection and control using a wide-area network of phasor measurements’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 121127.
    11. 11)
      • 11. Zhou, D.Q., Annakkage, U.D., Rajapakse, A.D.: ‘Online monitoring of voltage stability margin using an artificial neural network’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 15661574.
    12. 12)
      • 12. Zheng, C., Malbasa, V., Kezunovic, M.: ‘Regression tree for stability margin prediction using synchrophasor measurements’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 19781987.
    13. 13)
      • 13. Chen, C., Wang, J., Li, Z., et al: ‘PMU uncertainty quantification in voltage stability analysis’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 21962197.
    14. 14)
      • 14. Taylor, C.W.: ‘Concepts of undervoltage load shedding for voltage stability’, IEEE Trans. Power Deliv., 1992, 7, (9), pp. 480488.
    15. 15)
      • 15. Matsuda, S., Ogi, H., Nishimura, K., et al: ‘Power system voltage control by distributed expert systems’, IEEE Trans. Ind. Electron., 1990, 37, (3), pp. 236240.
    16. 16)
      • 16. Ma, H.M., Ng, K., Man, K.F.: ‘Multiobjective coordinated power voltage control using jumping genes paradigm’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 40754084.
    17. 17)
      • 17. Modarresi, J., Gholipour, E., Khodabakhshian, A.: ‘New adaptive and centralised under-voltage load shedding to prevent short-term voltage instability’, IET Gener. Transm. Distrib., 2018, 12, (11), pp. 25302538.
    18. 18)
      • 18. Javadi, M., Amraee, T.: ‘Mixed integer linear formulation for undervoltage load shedding to provide voltage stability’, IET Gener. Transm. Distrib., 2018, 12, (9), pp. 20952104.
    19. 19)
      • 19. Abedini, M., Sanaye-Pasand, M., Azizi, S.: ‘Adaptive load shedding scheme to preserve the power system stability following large disturbances’, IET Gener. Transm. Distrib., 2014, 8, (12), pp. 21242133.
    20. 20)
      • 20. Stewart, V., Camm, E.H.: ‘Modeling of stalled motor loads for power system short-term voltage stability analysis’. Proc. IEEE Power Engineering Society General Meeting, San Francisco, CA, USA, June 2005.
    21. 21)
      • 21. Vournas, C.D., Manos, G.A.: ‘Modeling of stalling motors during voltage stability studies’, IEEE Trans. Power Syst., 1998, 13, (3), pp. 775781.
    22. 22)
      • 22. Halpin, S.M., Harley, K.A., Jones, R.A., et al: ‘Slope permissive under-voltage load shed relay for delayed voltage recovery mitigation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12111216.
    23. 23)
      • 23. Halpin, S.M., Jones, R.A., Taylor, L.Y.: ‘The MVA-volt index: a screening tool for predicting fault-induced low voltage problems on bulk transmission systems’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 12051210.
    24. 24)
      • 24. Lu, N., Yang, B., Huang, Z., et al: ‘The system impact of air conditioner under-voltage protection schemes’. Proc. IEEE Power Engineering Society General Meeting, Seattle, WA, USA, March 2009.
    25. 25)
      • 25. Sullivan, D., Pape, R., Birsa, J., et al: ‘Managing fault-induced delayed voltage recovery in metro Atlanta with the Barrow County SVC’. Proc. IEEE Power Engineering Society General Meeting, Seattle, WA, USA, March 2009.
    26. 26)
      • 26. Bai, H., Ajjarapu, V.: ‘A novel online load shedding strategy for mitigating fault-induced delayed voltage recovery’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 294304.
    27. 27)
      • 27. Dong, Y., Xie, X., Wang, K., et al: ‘An emergency-demand-response based under speed load shedding scheme to improve short-term voltage stability’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 37263735.
    28. 28)
      • 28. North American Electric Reliability Corporation (NERC): ‘A technical reference paper on fault-induced delayed voltage recovery’. June 2009.
    29. 29)
      • 29. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: ‘Analysis of electric machinery and drive systems’ (Wiley, Hoboken, NJ, USA, 2002, 2nd edn.).
    30. 30)
      • 30. Horowitz, S.H., Phadke, A.G.: ‘Power system relaying’ (Wiley, Hoboken, NJ, USA, 2008, 3rd edn.).
    31. 31)
      • 31. Horowitz, S.H., Phadke, A.G.: ‘Third zone revisited’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 2329.
    32. 32)
      • 32. Ziegler, G.: ‘Numerical distance protection: principles and applications’ (Publicis, Erlangen, Germany, 2011, 4th edn.).
    33. 33)
      • 33. Nozari, F., Kankam, M.D., Price, W.W.: ‘Aggregation of induction motors for transient stability load modeling’, IEEE Trans. Power Syst., 1987, 2, (4), pp. 10961103.
    34. 34)
      • 34. Bollen, M.H.J.: ‘The influence of motor reacceleration on voltage sags’, IEEE Trans. Ind. Appl., 1995, 31, pp. 667674.
    35. 35)
      • 35. DIgSILENT GmbH: ‘DIgSILENT power factory’, Version 14, 2008.
    36. 36)
      • 36. Seyedi, H., Sanaye-Pasand, M.: ‘New centralized adaptive load-shedding algorithms to mitigate power system blackouts’, IET Gener. Transm. Distrib., 2009, 3, (1), pp. 99114.

Related content

This is a required field
Please enter a valid email address