Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stochastic optimal dispatch of PV/wind/diesel/battery microgrids using state-space approximate dynamic programming

In the operation of microgrids (MGs), the stochastic production of solar/wind, the discrete variables of photovoltaic (PV) inverter's auxiliary service state and diesel generators’ (DGs’) off–on state generally need to be considered, and a stochastic mixed-integer non-linear non-convex programming (MINNP) model is established for the optimal dispatch of MGs. In this model, the expected value of the sum of DGs’ operation as well as start-up cost, the network-loss cost and the PV inverter's auxiliary service cost, is considered as the objective function. The stochastic MINNP model is transformed into a stochastic mixed-integer second-order cone programming (MISOCP) model to reduce the computational complexity. The state-space approximate dynamic programming algorithm is adopted to solve the stochastic MISOCP model. In the algorithm, based on the approximate value functions of typical states that are computed according to the Markov decision process, solving the optimisation model of multiple periods is executed by solving each period's optimisation model one by one to improve the computational efficiency. Meanwhile, parallel computing is executed to greatly improve the efficiency of the proposed algorithm. Test results on two modified IEEE-33 bus and IEEE-123 bus islanded MGs with PV/wind/diesel/battery demonstrate the correctness and efficiency of the proposed model and algorithm.

References

    1. 1)
      • 27. Rosehart, W., Roman, C., Schellenberg, A.: ‘Optimal power flow with complementarity constraints’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 813822.
    2. 2)
      • 23. Powell, W.B., Meisel, S.: ‘Tutorial on stochastic optimization in energy – part I: modeling and policies’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 14591467.
    3. 3)
      • 24. Zhang, W., Nikovski, D.: ‘State-space approximate dynamic programming for stochastic unit commitment’ (NAPS, Boston, MA, USA, 2011), pp. 17.
    4. 4)
      • 32. Feinberg, E.A., Shwartz, A., Altman, E.: ‘Handbook of Markov decision processes: methods and application’ (Kluwer Academic Publishers, Boston, MA, USA, 2002).
    5. 5)
      • 7. Dall'Anese, E., Dhople, S.V., Johnson, B.B.: ‘Optimal dispatch of residential photovoltaic inverters under forecasting uncertainties’, IEEE J. Photovolt., 2015, 5, (1), pp. 350359.
    6. 6)
      • 36. Fu, Y., Liu, M., Li, L.: ‘Multiobjective stochastic economic dispatch with variable wind generation using scenario-based decomposition and asynchronous block iteration’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 139149.
    7. 7)
      • 35. ‘GAMS, GAMS User's Guide’. Available at https://www.gams.com/latest/docs/UG_ModelSolve.html#UG_ModelSolve_SolveStatement, accessed April 2018.
    8. 8)
      • 18. Ding, T., Liu, S., Yuan, W., et al: ‘A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 301311.
    9. 9)
      • 6. Ding, T., Li, C., Yang, Y., et al: ‘A two-stage robust optimization for centralized-optimal dispatch of photovoltaic inverters in active distribution networks’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 744754.
    10. 10)
      • 20. Powell, W.B.: ‘Approximate dynamic programming: solving the curses of dimensionality’ (Wiley, Hoboken, NJ, USA, 2011, 2nd edn.).
    11. 11)
      • 3. Guerrero, J.M., Chandorkar, M., Lee, T., et al: ‘Advanced control architectures for intelligent microgrids – part I: decentralized and hierarchical control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12541262.
    12. 12)
      • 8. Dall'Anese, E., Dhople, S.V., Giannakis, G.B.: ‘Optimal dispatch of photovoltaic inverters in residential distribution systems’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 487497.
    13. 13)
      • 19. Zheng, Q.P., Wang, J., Liu, A.L.: ‘Stochastic optimization for unit commitment – a review’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19131924.
    14. 14)
      • 14. Zhao, B., Guo, C.X., Cao, Y.J.: ‘A multi-agent-based particle swarm optimization approach for optimal reactive power dispatch’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 10701078.
    15. 15)
      • 28. Bose, S., Low, S.H., Teeraratkul, T., et al: ‘Equivalent relaxations of optimal power flow’, IEEE Trans. Autom. Control, 2015, 60, (3), pp. 729742.
    16. 16)
      • 25. Carrion, M., Arroyo, J.M.: ‘A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 13711378.
    17. 17)
      • 33. Powell, W.B.: ‘What you should know about approximate dynamic programming’ (Princeton University, Princeton, USA, 2008).
    18. 18)
      • 22. Nascimento, J., Powell, W.B.: ‘An optimal approximate dynamic programming algorithm for concave, scalar storage problems with vector-valued controls’, IEEE Trans. Autom. Control, 2013, 58, (12), pp. 29953005.
    19. 19)
      • 11. Wang, J., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with volatile wind power generation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13191327.
    20. 20)
      • 9. Ding, T., Kou, Y., Yang, Y., et al: ‘Evaluating maximum photovoltaic integration in district distribution systems considering optimal inverter dispatch and cloud shading conditions’, IET Renew. Power Gener., 2017, 11, (1), pp. 165172.
    21. 21)
      • 15. Farivar, M., Low, S.H.: ‘Branch flow model: relaxations and convexification-part1’, IEEE Trans. Power syst., 2013, 28, (3), pp. 25542564.
    22. 22)
      • 29. Ding, T., Bo, R., Gu, W., et al: ‘Big-M based MIQP method for economic dispatch with disjoint prohibited zones’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 976977.
    23. 23)
      • 34. Ryzhov, I.O., Frazier, P.I., Powell, W.B.: ‘A new optimal step size for approximate dynamic programming’, IEEE Trans. Autom. Control, 2015, 60, (3), pp. 743758.
    24. 24)
      • 26. Mazidi, M., Monsef, H., Siano, P.: ‘Robust day-ahead scheduling of smart distribution networks considering demand response programs’, Appl. Energy, 2016, 178, (15), pp. 929942.
    25. 25)
      • 4. Hadi Amini, M., Boroojeni, K.G., Dragicevic, T., et al: ‘A comprehensive cloud-based real-time simulation framework for oblivious power routing in clusters of DC microgrids’. IEEE 2nd Int. Conf. on DC Microgrids (ICDCM), Nuremburg, Germany, 2017, pp. 270273.
    26. 26)
      • 12. Ruiz, P., Philbrick, C., Zak, E., et al: ‘Uncertainty management in the unit commitment problem’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 642651.
    27. 27)
      • 21. Bertsekas, D.P.: ‘Dynamic programming and optimal control’ (Athena Scientific, Belmont, MA, USA, 2008, 3rd edn.).
    28. 28)
      • 16. Li, Q., Ayyanar, R., Vittal, V.: ‘Convex optimization for DES planning and operation in radial distribution systems with high penetration of photovoltaic resources’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 985995.
    29. 29)
      • 17. Lee, C., Liu, C., Mehrotra, S., et al: ‘Robust distribution network reconfiguration’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 836842.
    30. 30)
      • 30. Ding, T., Bo, R., Li, F., et al: ‘A bi-level branch and bound method for economic dispatch with disjoint prohibited zones considering network losses’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 28412855.
    31. 31)
      • 2. Karimi, Y., Oraee, H., Guerrero, J.M.: ‘Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 61356144.
    32. 32)
      • 1. ‘BP, BP Statistical Review of World Energy’: Available at https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf, accessed April 2018.
    33. 33)
      • 31. Nikovski, D., Zhang, W.: ‘Factored Markov decision process models for stochastic unit commitment’ (CITRES, Waltham, MA, USA, 2010), pp. 2835.
    34. 34)
      • 13. Jabr, R.: ‘Tight polyhedral approximation for mixed-integer linear programming unit commitment formulations’, IET Gener. Trans. Distrib., 2012, 6, (11), pp. 11041111.
    35. 35)
      • 10. Dall'Anese, E., Dhople, S.V., Johnson, B.B., et al: ‘Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 957967.
    36. 36)
      • 5. Bahrami, S., Sheikhi, A.: ‘From demand response in smart grid toward integrated demand response in smart energy hub’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 650658.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5840
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5840
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address