Stochastic integration of demand response and reconfiguration in distribution network expansion planning

Stochastic integration of demand response and reconfiguration in distribution network expansion planning

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Planning the distribution network of the future involves forecasting the most likely scenario to make appropriate investment decisions. Many uncertainties concerning, e.g. the evolution of conventional loads, renewable production and electric vehicles (EVs) make it difficult to predict the location of the distribution network's weaknesses (overvoltages, undervoltages and overcurrents) and their occurrence. In some cases, alternative solutions such as demand response (DR) and reconfiguration can remove the constraints and prevent expensive network investment. This study proposes a two-stage algorithm that is able to give the probability that no technical constraints will appear as a function of the reinforcement cost with and without using DR and/or reconfiguration. The first stage of the algorithm consists in running Monte Carlo simulations based on realistic scenarios for loads, EVs and renewable production development provided by French governmental roadmaps. The cost of reinforcement per line and per hour of constraints enables selection of the feeders, where DR (solved with linear programming) and/or reconfiguration (exhaustive research) will be implemented in the second stage of the algorithm to remove these constraints. The methodology is applied to a real part of a French distribution network.


    1. 1)
      • 1. Repo, S., Laaksonen, H., Järventausta, P.: ‘Statistical short-term network planning of distribution system and distributed generation’. 15th Power Systems Computation Conf., Liege, 2005.
    2. 2)
      • 2. CRE: ‘Study on the value of flexibility in the management and design basis of distribution networks in France’, 2015.
    3. 3)
      • 3. CEER: ‘The future role of DSOs’, 2015.
    4. 4)
      • 4. EURELECTRIC: ‘Active distribution system management. A key tool for the smooth integration of distributed generation’, 2013.
    5. 5)
      • 5. Gouin, V., Alvarez-Hérault, M.C., Raison, B.: ‘Benefits of load shedding for distribution grids investments planning’. Proc. 2015 IEEE Power Engineering Society General Meeting, 2015, pp. 15.
    6. 6)
      • 6. ‘Etude sur la valeur de la flexibilité pour la gestion et le dimensionnement des réseaux de distribution’. Available at, Accessed 20 August 2016.
    7. 7)
      • 7. Schilling, M.T., Da Silva, A.L., Billinton, R., et al: ‘Bibliography on power system probabilistic analysis (1962–1988)’, IEEE Trans. Power Syst., 1990, 5, (1), pp. 111.
    8. 8)
      • 8. Borkowska, B.: ‘Probabilistic load flow’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, (3), pp. 752759.
    9. 9)
      • 9. Dopazo, J.F., Klitin, O.A., Sasson, A.M.: ‘Stochastic load flow’, IEEE Trans. Power Appar. Syst., 1975, 99, (12), pp. 299309.
    10. 10)
      • 10. Ellard, D., Ellard, P.: ‘SQ course book’, 2003. Available at
    11. 11)
      • 11. Cortes-Carmona, M., Palma-Behnke, R., Jimenez-Estevez, G.: ‘Fuzzy load flow based on α-cuts arithmetics’. 39th North American Power Symp., 2007. NAPS ‘07, Las Cruces, NM, 2007.
    12. 12)
      • 12. Hong, L., Shi, L., Yao, L., et al: ‘Study on fuzzy load flow with consideration of wind generation uncertainties’. Transmission & Distribution Conf. & Exposition: Asia and Pacific, Seoul, 2009.
    13. 13)
      • 13. Darabadi, M.T., Hashemi, F., Ghadimi, N., et al: ‘Newton-Raphson load flow with consideration of the fuzzy load and in the presence of the distributed generations in distribution network’. 2011 10th Int. Conf. on Environment and Electrical Engineering (EEEIC), Rome, 2011.
    14. 14)
      • 14. Alvarez-Herault, M.C., N'Doye, N., Gandioli, C., et al: ‘Meshed distribution network vs reinforcement to increase the distributed generation connection’, Sust. Energy Grids Netw., 2015, 1, pp. 2027.
    15. 15)
      • 15. Konstantelos, I., Giannelos, S., Strbac, G.: ‘Strategic valuation of smart grid technology options in distribution networks’, IEEE Trans. Power Syst., 2016, 32, (2), pp. 12931303.
    16. 16)
      • 16. Giannelos, S., Konstantelos, I., Strbac, G.: ‘Stochastic optimisation-based valuation of smart grid options under firm DG contracts’. 2016 IEEE Int. Energy Conf. (ENERGYCON), Leuven, 2016.
    17. 17)
      • 17. Schachter, J.A., Mancarella, P., Moriarty, J., et al: ‘Flexible investment under uncertainty in smart distribution networks with demand side response: assessment framework and practical implementation’, Energy Policy, 2016, 97, pp. 439449.
    18. 18)
      • 18. ‘NegaWatt’. Available at, Accessed 2016.
    19. 19)
      • 19. RTE: ‘Relations entre le GRD et le responsable d’équilibre. Dispositions applicables pour l'estimation des courbes de charges’, 2015. Available at
    20. 20)
      • 20. ‘Éclairage public: vous avez des questions?’, 2014. Available at
    21. 21)
      • 21. Soares, J., Canizes, B., Lobo, C., et al: ‘Electric vehicle scenario simulator tool for smart grid operators’, Energies, 2012, 5, (6), pp. 18811899.
    22. 22)
      • 22. Ball, R., Keers, N., Alexander, M., et al: ‘Deliverable 2.1: modelling electric storage devices for electric vehicles’, 2010. Available at
    23. 23)
      • 23. INSEE: ‘Enquête maddif multimotif adaptée à la dynamique des comportements de déplacement en Île-de-France’, 2000.
    24. 24)
      • 24. ENTD. Available at
    25. 25)
      • 25. ‘Enquête Nationale Transports et Déplacements (ENTD)’, 2008. Available at
    26. 26)
      • 26. Albadi, M.H., El-Saadany, E.F.: ‘A summary of demand response in electricity markets’, Electr. Power Syst. Res., 2008, 78, pp. 19891996.
    27. 27)
      • 27. Gouin, V.: ‘Evaluation of the impact of the smart grid on planning practices with distributed generation and flexible loads’. PhD. dissertation, G2ELab, Grenoble Alpes Univ., Grenoble, France, 2015.
    28. 28)
      • 28. Centre d'Analyse Stratégie, French Government: ‘Rapport – les secteurs de la nouvelle croissance: une projection à l'horizon 2030’, 2012.
    29. 29)
      • 29. Greenlys Report 2.3.1: ‘Mécanismes de création de valeur du point de vue du réseau, modèles économiques associés, méthodes et modèles d’évaluation et de quantification’, ADEME, 2013.
    30. 30)
      • 30. Zeng, B., Zhang, J., Yang, X., et al: ‘Integrated planning for transition to low-carbon distribution system with renewable energy generation and demand response’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 11531165.
    31. 31)
      • 31. Khodr, H.M., Vale, Z., Ramos, C., et al: ‘Optimization techniques for power distribution planning with uncertainties: a comparative study’. Power & Energy Society General Meeting, 2009.

Related content

This is a required field
Please enter a valid email address