access icon free Research on modelling and simulation of converters for electromagnetic transient simulation in photovoltaic power generation system

Large-scale photovoltaic (PV) power plants connected to the grid leads to the complex calculations in the modelling and simulation of the power system, especially in the electromagnetic transient progress. Common averaging methods are studied for modelling a grid-connected converter to simplify the calculation and balance accuracy and efficiency in simulation. The piecewise technique, which combines the time segment with similar operating characteristic, is applied to different averaging models of converters. The advantages and disadvantages of different piecewise averaging models are compared. In addition, a new piecewise generalised state-space averaging (P-GSSA) model is derived and a multiple time scale modelling is achieved for the grid-connected converters in PV systems. The model error and accuracy of the P-GSSA model are analysed, the physical significance and the influence factors in the model error of P-GSSA model are discussed. The research shows that P-GSSA model is flexible to be used in a PVs system simulation, and it can accurately reflect the steady state and transient characteristics of a converter. The analysis of the P-GSSA model is verified by simulating a DC/AC converter and a PV system.

Inspec keywords: distributed power generation; power system simulation; DC-AC power convertors; invertors; photovoltaic power systems; power grids; state-space methods

Other keywords: common averaging methods; transient characteristics; grid-connected converter; multiple time scale modelling; different piecewise averaging models; power system; piecewise generalised state-space averaging model; electromagnetic transient progress; PVs system simulation; model error; photovoltaic power generation system; PV system; large-scale photovoltaic power plants; electromagnetic transient simulation; P-GSSA model; steady state; balance accuracy

Subjects: Power convertors and power supplies to apparatus; Power engineering computing; Distributed power generation; DC-AC power convertors (invertors); Control of electric power systems; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 19. Chiniforoosh, S., Atighechi, H., Davoudi, A., et al: ‘Steady-state and dynamic performance of front-end diode rectifier loads as predicted by dynamic average-value models’, IEEE Trans. Power Delivery, 2013, 28, (3), pp. 15331541.
    2. 2)
      • 12. Sanders, S.R., Noworolski, J.M., Liu, X.Z., et al: ‘Generalized averaging method for power conversion circuits’, IEEE Trans. Power Electron., 1991, 6, (2), pp. 251259.
    3. 3)
      • 1. Ekström, J., Koivisto, M., Mellin, I.: ‘A statistical model for hourly large-scale wind and photovoltaic generation in new locations’, IEEE Trans. Sust. Energy, 2017, 8, (4), pp. 13831393.
    4. 4)
      • 22. Xu, Y., Chen, Y., Liu, C.: ‘Piecewise average-value model of PWM converters with applications to large-signal transient simulations’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 13041321.
    5. 5)
      • 13. Jonathan, W., Philip, T.: ‘Singular perturbation theory for DC–DC converters and application to PFC converters’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 29702981.
    6. 6)
      • 4. Faa, J.L., Hsuang, C.C., Jin, K.C. ‘Modeling and controller design of PV micro inverter without using electrolytic capacitors and input current sensors’, Energies, 2016, 9, (12), p. 993.
    7. 7)
      • 9. Montenegro, D., Ramos, G.A., Bacha, S.: ‘Multilevel A-diakoptics for the dynamic power-flow simulation of hybrid power distribution systems’, IEEE Trans. Ind. Inf., 2016, 12, (1), pp. 267276.
    8. 8)
      • 16. Shen, Z., Dinavahi, V.: ‘Comprehensive electromagnetic transient simulation of AC/DC grid with multiple converter topologies and hybrid modeling schemes’, IEEE Power Energy Technol. Syst. J., 2017, 4, (3), pp. 4050.
    9. 9)
      • 11. Davoudi, A., Jatskevich, J.: ‘Numerical state-space average-value modeling of PWM DC-DC converters operating in DCM and CCM’, IEEE Trans. Power Electron., 2006, 21, (4), pp. 10031012.
    10. 10)
      • 21. Yin, R., Shi, M., Hu, W., et al: ‘An accelerated model of modular isolated DC/DC converter used in offshore DC wind farm’, IEEE Trans. Power Electron., 2019, 34, (4), pp. 31503163.
    11. 11)
      • 5. Kota, O., Hirofumi, A.: ‘Low-voltage-ride-through (LVRT) control of an HVDC transmission system using two modular multilevel DSCC converters’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 59315942.
    12. 12)
      • 14. Behjati, H., Niu, L., Davoudi, A., et al: ‘Alternative time-invariant multi-frequency modeling of PWM DC-DC converters’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2013, 60, (11), pp. 30693079.
    13. 13)
      • 2. Remon, D., Cantarellas, A.M., Mauricio, J.M.: ‘Power system stability analysis under increasing penetration of photovoltaic power plants with synchronous power controllers’, IET Renew. Power Gener., 2017, 11, (6), pp. 733741.
    14. 14)
      • 3. Dragičević, T., Lu, X., Juan, C., et al: ‘DC microgrids – part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    15. 15)
      • 8. Song, Y., Chen, Y., Huang, S., et al: ‘Average value model of grid side converter in PMSG for system-level studies’, J. Eng., 2017, 2017, (13), pp. 17991803.
    16. 16)
      • 18. Yahyaie, F., Lehn, P.W.: ‘On dynamic evaluation of harmonics using generalized averaging techniques’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 22162224.
    17. 17)
      • 10. Daryabalc, M., Filizadeh, S., Jatskevich, J., et al: ‘Modeling of LCC-HVDC systems using dynamic phasors’, IEEE Trans. Power Delivery, 2014, 29, (4), pp. 19891998.
    18. 18)
      • 25. Xu, Y., Chen, Y., Chen, L., et al: ‘Integrating an improved averaged model for PWM converters into EMTP’, IEEE Trans. Power Delivery, 2014, 29, (1), pp. 291293.
    19. 19)
      • 20. Lehman, B., Base, R.M.: ‘Extensions of average theory for power electronic systems’, IEEE Trans. Power Electron., 1996, 11, (4), pp. 542553.
    20. 20)
      • 23. Sanders, J.A., Verhulst, F., Murdock, J.: ‘Averaging methods in nonlinear dynamical systems’ (Springer, New York, NY, USA, 2007, 2nd edn.).
    21. 21)
      • 15. Lin, N., Dinavahi, V.: ‘Variable time-stepping modular multilevel converter model for fast and parallel transient simulation of multiterminal DC grid’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 66616670.
    22. 22)
      • 6. Sadeghkhani, I., Golshan, M.E.H., Mehrizi-Sani, A., et al: ‘Low-voltage ride-through of a droop-based three-phase four-wire grid-connected microgrid’, IET Gener. Transm. Distrib., 2018, 12, (8), pp. 19061914.
    23. 23)
      • 24. Kimball, J.W., Krein, P.T.: ‘Singular perturbation theory for DC-DC converters and application to PFC converters’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 29702981.
    24. 24)
      • 17. Bagheri, A., Mardaneh, M., Rajaei, A., et al: ‘Detection of grid voltage fundamental and harmonic components using kalman filter and generalized averaging method’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 10641073.
    25. 25)
      • 7. Song, G., Wang, T., Huang, X., et al: ‘Dynamic modelling of the VSC-HVDC for analytical studies’, J. Eng., 2017, 2017, (13), pp. 10601064.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5819
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5819
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading