Reducing the scenarios of network topology changes for adaptive coordination of overcurrent relays using hybrid GA–LP

Reducing the scenarios of network topology changes for adaptive coordination of overcurrent relays using hybrid GA–LP

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, using the concept of setting groups (SGs), an adaptive protection scheme is proposed to increase the reliability of the system. Connection and disconnection of switches and distributed generators result in various scenarios for network topology changes. A hybrid genetic algorithm (GA) and linear programming (LP) method is utilised to solve the problem, where the GA, in a near-optimal manner, classifies the scenarios of the network topology changes into a limited number of SGs and the LP algorithm optimally coordinates the overcurrent relays within the SGs. Simulations are performed on a radial distribution network and a meshed distribution network. Although by increasing the number of SGs the average operating time of the relays is decreased, the number of changes in the relay settings is increased. Therefore, the multi-objective optimisation algorithm is used to determine, the desired number of SGs. The results show the efficiency of the proposed adaptive protection scheme.


    1. 1)
      • 1. Phadke, A.G., James, S.T.: ‘Computer relaying for power systems’ (John Wiley & Sons, Chichester, UK, 2009).
    2. 2)
      • 2. Papaspiliotopoulos, V.A., Korres, G.N., Kleftakis, V.A., et al: ‘Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 393400.
    3. 3)
      • 3. Venkata, S.S., Pahwa, A., Brown, R.E., et al: ‘What future distribution engineers need to learn’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 1723.
    4. 4)
      • 4. Horowitz, S.H., Phadke, A.G., Thorp, J.S.: ‘Adaptive transmission system relaying’, IEEE Trans. Power Deliv., 1988, 3, (4), pp. 14361445.
    5. 5)
      • 5. Adamiak, M., Banerjee, H.N., Bright, J.A.: ‘Feasibility of adaptive protection and control’, IEEE Trans. Power Deliv., 1993, 8, (3), pp. 975983.
    6. 6)
      • 6. Chattopadhyay, B., Sachdev, M.S., Sidhu, T.S.: ‘An on-line relay coordination algorithm for adaptive protection using linear programming technique’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 165173.
    7. 7)
      • 7. Amoda, O.A., Schulz, N.N.: ‘An adaptive protection scheme for shipboard power systems’. Electric Ship Technologies Symp. (ESTS'07), Arlington, VA, USA, May 2007, pp. 225230.
    8. 8)
      • 8. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    9. 9)
      • 9. Mahat, P., Chen, Z., Bak-Jensen, B., et al: ‘A simple adaptive overcurrent protection of distribution systems with distributed generation’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 428437.
    10. 10)
      • 10. Ciontea, C.I., Bak, C.L., Blaabjerg, F., et al: ‘Decentralized adaptive overcurrent protection for medium voltage maritime power systems’. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Xi'an, China, October 2016, pp. 25692573.
    11. 11)
      • 11. Bhattarai, B.P., Bak-Jensen, B., Chaudhary, S., et al: ‘An adaptive overcurrent protection in smart distribution grid’. PowerTech, 2015 IEEE Eindhoven, Eindhoven, Netherlands, 29 June–2 July 2015, pp. 16.
    12. 12)
      • 12. Esmaili, P., Zin, A.A.M., Shariati, O.: ‘On-line overcurrent relays setting approach in distribution networks by implementing new adaptive protection algorithm’. 2015 IEEE Tenth Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, April 2015, pp. 16.
    13. 13)
      • 13. Oudalov, A., Fidigatti, A.: ‘Adaptive network protection in microgrids’, Int. J. Distrib. Energy Resour., 2009, 5, (3), pp. 201226.
    14. 14)
      • 14. Lin, H., Guerrero, J.M., Jia, C., et al: ‘Adaptive overcurrent protection for microgrids in extensive distribution systems’. 42nd Annual Conf. IEEE Industrial Electronics Society (IECON), Florence, Italy, October 2016, pp. 40424047.
    15. 15)
      • 15. Shih, M.Y., Salazar, C.A.C., Enriquez, A.C.: ‘Adaptive directional overcurrent relay coordination using ant colony optimisation’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 20402049.
    16. 16)
      • 16. Coffele, F., Booth, C., Dysko, A.: ‘An adaptive overcurrent protection scheme for distribution networks’, IEEE Trans. Power Deliv., 2014, 30, (2), pp. 561568.
    17. 17)
      • 17. Ibrahim, A.M., El-Khattam, W., ElMesallamy, M., et al: ‘Adaptive protection coordination scheme for distribution network with distributed generation using ABC’, J. Electr. Syst. Inf. Technol. Eng., 2016, 3, (2), pp. 320332.
    18. 18)
      • 18. Sitharthan, R., Geethanjali, M., Pandy, T.K.S.: ‘Adaptive protection scheme for smart microgrid with electronically coupled distributed generations’, Alexandria Eng. J., 2016, 55, (3), pp. 25392550.
    19. 19)
      • 19. Shih, M.Y., Conde, A., Leonowicz, Z., et al: ‘An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 52175228.
    20. 20)
      • 20. Shen, S., Lin, D., Wang, H., et al: ‘An adaptive protection scheme for distribution systems with DGs based on optimized thevenin equivalent parameters estimation’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 411419.
    21. 21)
      • 21. Singh, M., Vishnuvardhan, T., Srivani, S.G.: ‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39193929.
    22. 22)
      • 22. Oudalov, A., Fidigatti, A., Ishchenko, D., et al: ABB Research Ltd, ‘Adaptive protection for distribution grid based on area concept’. U.S. Patent 9 887 531, 2018.
    23. 23)
      • 23. Teimourzadeh, S., Aminifar, F., Davarpanah, M., et al: ‘Adaptive protection for preserving microgrid security’, IEEE Trans. Smart Grid, 2018, pp. 1, DOI: 10.1109/TSG.2017.2749301.
    24. 24)
      • 24. Della Giustina, D., Dedè, A., de Sotomayor, A.A., et al: ‘Toward an adaptive protection system for the distribution grid by using the IEC 61850’. 2015 IEEE Int. Conf. Industrial Technology (ICIT), Seville, Spain, March 2015, pp. 23742378.
    25. 25)
      • 25. Núñez-Mata, O., Palma-Behnke, R., Valencia, F., et al: ‘Adaptive protection system for microgrids based on a robust optimization strategy’, Energies, 2018, 11, (2), p. 308.
    26. 26)
      • 26. Swathika, O.G., Hemamalini, S.: ‘Prims-aided dijkstra algorithm for adaptive protection in microgrids’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (4), pp. 12791286.
    27. 27)
      • 27. Piesciorovsky, E.C., Schulz, N.N.: ‘Comparison of programmable logic and SG methods for adaptive overcurrent protection in microgrids’, Electr. Power Syst. Res., 2017, 151, pp. 273282.
    28. 28)
      • 28. Mohammadi, R., Farokhifar, M., Askarian-Abyaneh, H., et al: ‘Optimal coordination of overcurrent relays in the presence of distributed generation using an adaptive method’, J. Electr. Eng. Technol., 2016, 6, (11), pp. 15901599.
    29. 29)
      • 29. Saad, S.M., El Naily, N., Elhaffar, A., et al: ‘Applying adaptive protection scheme to mitigate the impact of distributed generator on existing distribution network’. 2017 8th Int. IEEE Renewable Energy Congress (IREC), Amman, Jordan, March 2017, pp. 16.
    30. 30)
      • 30. Muda, H., Jena, P.: ‘Sequence currents based adaptive protection approach for DNs with distributed energy resources’, IET Gener. Transm. Distrib., 2017, 11, (1), pp. 154165.

Related content

This is a required field
Please enter a valid email address