http://iet.metastore.ingenta.com
1887

access icon openaccess Non-parametric statistics-based predictor enabling online transient stability assessment

  • XML
    133.24609375Kb
  • PDF
    2.524036407470703MB
  • HTML
    140.6875Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-gtd/12/21/IET-GTD.2018.5802.html;jsessionid=2fvo985nt3yrx.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-gtd.2018.5802&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    2. 2)
      • 2. Jiang, N., Chiang, H.-D.: ‘Energy function for power system with detailed DC model: construction and analysis’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 37563764.
    3. 3)
      • 3. Odun-Ayo, T., Crow, M.L.: ‘Structure-preserved power system transient stability using stochastic energy functions’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14501458.
    4. 4)
      • 4. Bhui, P., Senroy, N.: ‘Real-time prediction and control of transient stability using transient energy function’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 923934.
    5. 5)
      • 5. Padiyar, K., Krishna, S.: ‘Online detection of loss of synchronism using energy function criterion,IEEE Trans. Power Deliv., 2006, 21, (1), pp. 4655.
    6. 6)
      • 6. Gou, J., Liu, Y., Liu, J., et al: ‘Novel pair-wise relative energy function for transient stability analysis and real-time emergency control’, IET Gener. Transm. Distrib., 2017, 11, (18), pp. 45654575.
    7. 7)
      • 7. Yan, J., Liu, C.-C., Vaidya, U.: ‘PMU-based monitoring of rotor angle dynamics’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 21252133.
    8. 8)
      • 8. Dasgupta, S., Paramasivam, M., Vaidya, U., et al: ‘PMU-based model-free approach for real-time rotor angle monitoring’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 28182819.
    9. 9)
      • 9. Wei, S., Yang, M., Qi, J., et al: ‘Model-free MLE estimation for online rotor angle stability assessment with PMU data’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 24632476.
    10. 10)
      • 10. Kamwa, I., Samantaray, S.R., Joos, G.: ‘Catastrophe predictors from ensemble decision-tree learning of wide-area severity indices’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 144158.
    11. 11)
      • 11. Kamwa, I., Samantaray, S.R., Joos, G.: ‘On the accuracy versus transparency trade-off of data-mining models for fast-response PMU-based catastrophe predictors’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 152161.
    12. 12)
      • 12. Amraee, T., Ranjbar, S.: ‘Transient instability prediction using decision tree technique’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 30283037.
    13. 13)
      • 13. Yang, Y., Huang, Y., Liu, J., et al: ‘Measurements based cell-DT method for power system transient stability classification’, CSEE J. Power Energy Syst., 2017, 3, (3), pp. 278285.
    14. 14)
      • 14. Papadopoulos, P.N., Guo, T., Milanović, J.V.: ‘Probabilistic framework for online identification of dynamic behavior of power systems with renewable generation’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 4554.
    15. 15)
      • 15. Gao, Q., Rovnyak, S.M.: ‘Decision trees using synchronized phasor measurements for wide-area response-based control’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 855861.
    16. 16)
      • 16. Rajapakse, A.D., Gomez, F., Nanayakkara, K., et al: ‘Rotor angle instability prediction using post-disturbance voltage trajectories’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 947956.
    17. 17)
      • 17. Geeganage, J., Annakkage, U.D., Weekes, T., et al: ‘Application of energy-based power system features for dynamic security assessment’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 19571965.
    18. 18)
      • 18. Wang, B., Fang, B., Wang, Y., et al: ‘Power system transient stability assessment based on big data and the core vector machine’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 25612570.
    19. 19)
      • 19. Zhang, R., Xu, Y., Dong, Z.Y., et al: ‘Post-disturbance transient stability assessment of power systems by a self-adaptive intelligent system’, IET Gener. Transm. Distrib., 2015, 9, (3), pp. 296305.
    20. 20)
      • 20. Yu, J.J.Q., Hill, D.J., Lam, A.Y.S., et al: ‘Intelligent time adaptive transient stability assessment system’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 10491058.
    21. 21)
      • 21. Liu, Y., Liu, Y., Liu, J., et al: ‘High-performance predictor for critical unstable generators based on scalable parallelized neural networks’, J. Mod. Power Syst. Clean Energy, 2016, 4, (3), pp. 414426.
    22. 22)
      • 22. Rahmatian, M., Chen, Y.C., Palizban, A., et al: ‘Transient stability assessment via decision trees and multivariate adaptive regression splines’, Electr. Power Syst. Res., 2017, 142, pp. 320328.
    23. 23)
      • 23. Liu, T., Liu, Y., Liu, J., et al: ‘Multi-indicator inference scheme for fuzzy assessment of power system transient stability’, CSEE J. Power Energy Syst., 2016, 2, (3), pp. 19.
    24. 24)
      • 24. Fu, C.J., Bose, A.: ‘Contingency ranking based on severity indices in dynamic security analysis’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 980986.
    25. 25)
      • 25. Li, G., Rovnyak, S.M.: ‘Integral square generator angle index for stability ranking and control’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 926934.
    26. 26)
      • 26. Alvarez, J.M., Mercado, P.E.: ‘Online inference of the dynamic security level of power systems using fuzzy techniques’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 717726.
    27. 27)
      • 27. Fan, J., Feng, Y., Song, R.: ‘Nonparametric independence screening in sparse ultra-high-dimensional additive models’, J. Am. Stat. Assoc., 2011, 106, (494), pp. 544556.
    28. 28)
      • 28. Huang, J., Horowitz, J.L., Wei, F.: ‘Variable selection in nonparametric additive models’, Ann. Stat., 2010, 38, (4), pp. 22822312.
    29. 29)
      • 29. Martin, K.E., Benmouyal, G., Adamiak, M.G., et al: ‘IEEE standard for synchrophasor for power systems’, IEEE Trans. Power Deliv., 1998, 13, (1), pp. 7377.
    30. 30)
      • 30. Gomez, F.R., Rajapakse, A.D., Annakkage, U.D., et al: ‘Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14741483.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5802
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5802
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address