http://iet.metastore.ingenta.com
1887

Robustness assessment of the expansion of coupled electric power and natural gas networks under cascading failures

Robustness assessment of the expansion of coupled electric power and natural gas networks under cascading failures

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Electricity and natural gas networks are critical infrastructure for society, but the robustness of coupled networks has not been evaluated, even though both systems have strong interactions. This article proposes a novel graph theory-based methodology to assess the structural robustness of the coupled natural gas and electricity transmission networks in Spain while considering their interdependencies. Cascading failures were simulated in 22 case studies with different topologies, and the performance against random failures was evaluated. The results show that the investment programme proposed by both network operators ultimately improves the robustness of the interdependent electricity and natural gas infrastructure in Spain compared to the current system.

References

    1. 1)
      • 1. Official Journal of the European Union.: DIRECTIVE 2009/72/EC, URL http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0072&from=EN, 2009.
    2. 2)
      • 2. Rinaldi, S.M.: ‘Modeling and simulating critical infrastructures and their interdependencies’. Proc. of the 37th Annual Hawaii Int. Conf. on System Sciences, Big Island, HI, USA, January 2004, pp. 18.
    3. 3)
      • 3. Ministerio de Industria, Energia y Turismo.: Planificacion Energetica. Plan de Desarrollo de la Red de Transporte de Energia Electrica 2015–2020. Available at http://www.mincotur.gob.es/energia/planificacion/Planificacionelectricidadygas/desarrollo2015–2020/Documents/Planificaci%C3%B3n%202015_2020%20%202016_11_28%20VPublicaci%C3%B3n.pdf, 2015.
    4. 4)
      • 4. Ouyang, M.: ‘Review on modeling and simulation of interdependent critical infrastructure systems’, Reliab. Eng. Syst. Saf., 2014, 121, pp. 4360.
    5. 5)
      • 5. Baldick, R., Chowdhury, B., Dobson, I., et al: ‘Vulnerability assessment for cascading failures in electric power systems’. 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, March 2009, pp. 19.
    6. 6)
      • 6. Reichardt, J.: ‘Structure in complex networks’ (Springer-Verlag, Berlin, Heidelberg, 2009), ISBN 978-3-540-87832-2. doi: 10.1007/978-3-540-87833-9.
    7. 7)
      • 7. Motter, A.E., Lai, Y.-C.: ‘Cascade-based attacks on complex networks’, Phys. Rev. E, 2002, 66, (6), p. 065102.
    8. 8)
      • 8. Holmgren, Å.J.: ‘Using graph models to analyze the vulnerability of electric power networks’, Risk Anal., 2006, 26, (4), pp. 955969.
    9. 9)
      • 9. Jelenius, E.: ‘Graph models of infrastructures and the robustness of power grids’, Master of Science in Physics Engineering, 2004.
    10. 10)
      • 10. Rosato, V, Bologna, S, Tiriticco, F: ‘Topological properties of high-voltage electrical transmission networks’, Electr. Power Syst. Res., 2007, 77, (2), pp. 99105.
    11. 11)
      • 11. Beyza, J., Yusta, J.M., Correa, G.J., et al: ‘Vulnerability assessment of a large electrical grid by new graph theory approach’, IEEE Latin Am. Trans., 2018, 16, (2), pp. 527535.
    12. 12)
      • 12. Correa, G.J., Yusta, J.M.: ‘Structural vulnerability in transmission systems: cases of Colombia and Spain’, Energy Convers. Manage., 2014, 77, pp. 408418.
    13. 13)
      • 13. Chen, G., Dong, Z.Y., Hill, D.J., et al: ‘An improved model for structural vulnerability analysis of power networks’, Phys. A, 2009, 388, (19), pp. 42594266.
    14. 14)
      • 14. Wang, K., Zhang, B.-H., Zhang, Z., et al: ‘An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load’, Phys. A, 2011, 390, (23–24), pp. 46924701.
    15. 15)
      • 15. Holmgren, A.J, Jenelius, E, Westin, J.: ‘Evaluating strategies for defending electric power networks against antagonistic attacks’, IEEE Trans. Power Syst., 2007, 22, (1), pp. 7684.
    16. 16)
      • 16. Azzolin, A., Dueñas-Osorio, L., Cadini, F., et al: ‘Electrical and topological drivers of the cascading failure dynamics in power transmission networks’, Reliab. Eng. Syst. Saf., 2018, 175, pp. 196206.
    17. 17)
      • 17. Zhang, X., Chi, K.T.: ‘Assessment of robustness of power systems from a network perspective’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2015, 5, (3), pp. 456464.
    18. 18)
      • 18. Wang, Z., Hill, D.J., Chen, G., et al: ‘Power system cascading risk assessment based on complex network theory’, Physica A, 2017, 482, pp. 532543.
    19. 19)
      • 19. Rocchetta, R., Patelli, E.: ‘Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision’, Int. J. Electr. Power Energy Syst., 2018, 98, pp. 219232.
    20. 20)
      • 20. Su, H., Zio, E., Zhang, J., et al: ‘A systematic framework of vulnerability analysis of a natural gas pipeline network’, Reliab. Eng. Syst. Saf., 2018, 175, pp. 7991.
    21. 21)
      • 21. Carvalho, R., Buzna, L., Bono, F., et al: ‘Robustness of trans-European gas networks’, Phys. Rev. E, 2009, 80, (1), p. 016106.
    22. 22)
      • 22. Erdener, B.C., Pambour, K.A., Lavin, R.B., et al: ‘An integrated simulation model for analysing electricity and gas systems’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 410420.
    23. 23)
      • 23. Wang, S., Hong, L., Ouyang, M., et al: ‘Vulnerability analysis of interdependent infrastructure systems under edge attack strategies’, Saf. Sci., 2013, 51, (1), pp. 328337.
    24. 24)
      • 24. Ouyang, M., Hong, L., Mao, Z.-J., et al: ‘A methodological approach to analyze vulnerability of interdependent infrastructures’, Simul. Modelling Pract. Theory, 2009, 17, (5), pp. 817828.
    25. 25)
      • 25. Praks, P., Kopustinskas, V., Masera, M.: ‘Monte-Carlo-based reliability and vulnerability assessment of a natural gas transmission system due to random network component failures’, Sust. Resilient Infrastruct., 2017, 2, (3), pp. 97107.
    26. 26)
      • 26. Shengyu, W., Peng, W., Jie, Y., et al: ‘Review on interdependency modeling of integrated energy system’. 2017 IEEE Conf. on Energy Internet and Energy System Integration (EI2), Beijing, China, November 2017, pp. 16.
    27. 27)
      • 27. Zhao, B., Conejo, A.J., Sioshansi, R.: ‘Coordinated expansion planning of natural gas and electric power systems’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 30643075.
    28. 28)
      • 28. Zhang, X., Shahidehpour, M., Alabdulwahab, A.S., et al: ‘Security-constrained co-optimization planning of electricity and natural gas transportation infrastructures’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 29842993.
    29. 29)
      • 29. He, Y., Shahidehpour, M., Li, Z., et al: ‘Robust constrained operation of integrated electricity-natural gas system considering distributed natural gas storage’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 10611071.
    30. 30)
      • 30. He, C., Wu, L., Liu, T., et al: ‘Robust co-optimization planning of interdependent electricity and natural gas systems with a joint n-1 and probabilistic reliability criterion’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 21402154.
    31. 31)
      • 31. Shao, C., Shahidehpour, M., Wang, X., et al: ‘Integrated planning of electricity and natural gas transportation systems for enhancing the power grid resilience’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 44184429.
    32. 32)
      • 32. Wang, C., Wei, W., Wang, J., et al: ‘Robust defense strategy for gas–electric systems against malicious attacks’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 29532965.
    33. 33)
      • 33. Portante, E.C., Kavicky, J.A., Craig, B.A., et al: ‘Modeling electric power and natural gas system interdependencies’, J. Infrastruct. Syst., 2017, 23, (4), p. 04017035.
    34. 34)
      • 34. Wang, B., Wan, S., Zhang, X., et al: ‘A novel index for assessing the robustness of integrated electrical network and a natural gas network’, IEEE Access., 2018, 6, pp. 4040040410.
    35. 35)
      • 35. Alabdulwahab, A., Abusorrah, A., Zhang, X., et al: ‘Stochastic security-constrained scheduling of coordinated electricity and natural gas infrastructures’, IEEE Syst. J., 2017, 11, (3), pp. 16741683.
    36. 36)
      • 36. Chen, Q., McCalley, J.D.: ‘Identifying high risk n-k contingencies for online security assessment’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 823834.
    37. 37)
      • 37. Correa, G.J., Yusta, J.M.: ‘Grid vulnerability analysis based on scale-free graphs versus power flow models’, Electr. Power Syst. Res., 2013, 101, pp. 7179.
    38. 38)
      • 38. Newman, M.E.J.: ‘The structure and function of complex networks’, SIAM Rev., 2003, 45, (2), pp. 167256.
    39. 39)
      • 39. Gross, J.L., Yellen, J., Zhang, P.: ‘Handbook of graph theory’ (Chapman and Hall/CRC, Boca Raton, FL, USA, 2013).
    40. 40)
      • 40. Latora, V., Marchiori, M.: ‘Efficient behavior of small-world networks’, Phys. Rev. Lett., 2001, 87, (19), p. 198701.
    41. 41)
      • 41. Albert, R., Barabási, A.-L.: ‘Statistical mechanics of complex networks’, Rev. Mod. Phys., 2002, 74, (1), p. 47.
    42. 42)
      • 42. Bollobás, B., Riordan, O.: ‘Robustness and vulnerability of scale-free random graphs’, Internet. Math., 2004, 1, (1), pp. 135.
    43. 43)
      • 43. REE: Grid manager and transmission agent, 2018. Available at http://www.ree.es/en/activities/grid-manager-and-transmission-agent.
    44. 44)
      • 44. Enagás: Transmission network. Available at http://www.enagas.es/enagas/es/Transporte_de_gas/Red_de_transporte, 2018.
    45. 45)
      • 45. REE: Grid maps. Available at http://www.ree.es/sites/default/files/01_ACTIVIDADES/Documentos/Mapas-de-red/mapa_transporte_iberico_2018.pdf, 2018.
    46. 46)
      • 46. Enagás: Infrastructures in operation. Available at http://www.enagas.es/WEBCORP-static/instalaciones/index.htm, 2018.
    47. 47)
      • 47. Enagás: Capacity at networks connection points. Available at http://www.enagas.es/enagas/es/Transporte_de_gas/CapacidadesTransporte/Puntos_de_conexion_Transporte_y_Transporte_(_PCTT), 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5799
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5799
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address