Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power-quality disturbance recognition based on time-frequency analysis and decision tree

The quality of electric power has become an important issue for electric utility companies and their customers. With the extensive application of micro-grid technologies, power quality (PQ) disturbances are more likely to affect users; thus, research on the recognition of PQ disturbances has attracted increased attention. This study presents a novel PQ disturbance-recognition algorithm, based on time-frequency (TF) analysis and a decision tree (DT) classifier. The proposed method requires fewer feature statistics compared to the S-transform-based approach for PQ disturbance identification. In this study, feature statistics extracted using TF analysis are trained by a DT classifier to perform the automatic classification of PQ disturbances. As the proposed methodology can efficiently identify PQ disturbances, the performance of the DT classifier can be ensured. In addition, the influence of noise is investigated, and 12 types of noisy disturbance, with signal-to-noise ratios of 30–50dB, are considered for the classification problem. Finally, the proposed method is compared with other popular proposed disturbance-recognition algorithms in terms of detection accuracy. The experimental results reveal that the proposed method can effectively detect and classify different PQ disturbances.

References

    1. 1)
      • 23. Panigrahi, B.K., Pandi, V.R.: ‘Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm’, IET Gener. Transm. Distrib., 2009, 3, (3), pp. 296306.
    2. 2)
      • 24. Bayram, M., Baraniuk, R.: ‘Multilple window time-varying spectrum estimation’, in Fitzgerald, W.J., Smith, R.L., Walden, A.T., et al (Eds.): ‘Nonlinear and nonstationary signal processing’ (Cambridge University Press, Cambridge, UK, 2000), pp. 292316.
    3. 3)
      • 4. Saini, M.K., Kapoor, R.: ‘Classification of power quality events – a review’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 1119.
    4. 4)
      • 30. Muhlbacher, T., Linhardt, L., Moller, T., et al: ‘TreePOD: sensitivity-aware selection of pareto-optimal decision trees’, IEEE Trans. Vis. Comput. Graph., 2017, PP, (99), pp. 11.
    5. 5)
      • 32. Thomson, D.J.: ‘Spectrum estimation and harmonic analysis’, Proc. IEEE, 2005, 70, (9), pp. 10551096.
    6. 6)
      • 9. Coppola, L., Liu, Q., Buso, S., et al: ‘Wavelet transform as an alternative to the short-time Fourier transform for the study of conducted noise in power electronics’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 880887.
    7. 7)
      • 26. Piaggi, P., Menicucci, D., Gentili, C., et al: ‘Adaptive filtering for removing nonstationary physiological noise from resting state fMRI BOLD signals’. 11th Int. Conf. on Intelligent Systems Design and Applications, Córdoba, Spain, November, 2013, pp. 237241.
    8. 8)
      • 13. Masoum, M.A.S., Jamali, S., Ghaffarzadeh, N. ‘Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks’, IET Sci. Meas. Technol., 2010, 4, (4), pp. 193205.
    9. 9)
      • 14. Gaing, Z.L.: ‘Wavelet-based neural network for power disturbance recognition and classification’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 15601568.
    10. 10)
      • 10. Gu, Y.H., Bollen, M.H.J.: ‘Time-frequency and time-scale domain analysis of voltage disturbances’, IEEE Trans. Power Deliv., 2000, 15, (4), pp. 12791284.
    11. 11)
      • 18. Fangwei, X.U., Yang, H., Maoqing, Y.E., et al: ‘Classification for power quality short duration disturbances based on generalized S-transform’, Proc. CSEE, 2012, 32, (4), pp. 7784.
    12. 12)
      • 12. Decanini, J.G.M.S., Tonelli-Neto, M.S., Malange, F.C.V., et al: ‘Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network’, Electr. Power Syst. Res., 2011, 81, (12), pp. 20572065.
    13. 13)
      • 17. Rodríguez, A., Aguado, J.A., Martín, F., et al: ‘Rule-based classification of power quality disturbances using S-transform’, Electr. Power Syst. Res., 2012, 86, (4), pp. 113121.
    14. 14)
      • 31. He, S., Li, K., Zhang, M.A.: ‘Real-time power quality disturbances classification using hybrid method based on S-transform and dynamics’, IEEE Trans. Instrum. Meas., 2013, 62, (9), pp. 24652475.
    15. 15)
      • 21. Manikandan, M.S., Samantaray, S.R., Kamwa, I.: ‘Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries’, IEEE Trans. Instrum. Meas., 2014, 64, (1), pp. 2738.
    16. 16)
      • 3. Bíscaro, A.A.P., Pereira, R.A.F., Kezunovic, M., et al: ‘Integrated fault location and power-quality analysis in electric power distribution systems’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 428436.
    17. 17)
      • 5. Seera, M., Lim, C.P., Chu, K.L., et al: ‘Power quality analysis using a hybrid model of the fuzzy min–max neural network and clustering tree’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 27, (12), pp. 27602767.
    18. 18)
      • 6. Tang, K., Shen, C., Chen, W., et al: ‘Microgrid modeling and simulation scenario design for power quality analysis’. IEEE PES Asia-Pacific Power and Energy Engineering Conf., Queensland, Australia, November, 2015, pp. 15.
    19. 19)
      • 33. Edgar, E.P.: ‘Fractal market analysis: applying chaos theory to investment and economics’, Chaos Theory, 1994, 34, (2), pp. 343345.
    20. 20)
      • 8. Granados-Lieberman, D., Romero-Troncoso, R.J., Osornio-Rios, R.A., et al: ‘Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 519529.
    21. 21)
      • 28. Zhong, T., Li, Y., Wu, N., et al: ‘Statistical analysis of background noise in seismic prospecting’, Geophys. Prospect., 2015, 63, (5), pp. 11611174.
    22. 22)
      • 7. Farzanehrafat, A., Watson, N.R.: ‘Power quality state estimator for smart distribution grids’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21832191.
    23. 23)
      • 11. Tse, N.C.F., Chan, J.Y.C., Lau, W.H., et al: ‘Hybrid wavelet and Hilbert transform with frequency-shifting decomposition for power quality analysis’, IEEE Trans. Instrum. Meas., 2012, 61, (12), pp. 32253233.
    24. 24)
      • 27. Tomasi, B., Preisig, J., Deane, G.B., et al: ‘A study on the wide-sense stationarity of the underwater acoustic channel for non-coherent communication systems’. 17th European Wireless 2011 - Sustainable Wireless Technologies. VDE, Vienna, Austria, April, 2011, pp. 16.
    25. 25)
      • 22. Janik, P., Lobos, T.: ‘Automated classification of power-quality disturbances using SVM and RBF networks’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16631669.
    26. 26)
      • 2. Camarena-Martinez, D., Valtierra-Rodriguez, M., Perez-Ramirez, C.A., et al: ‘Novel downsampling empirical mode decomposition approach for power quality analysis’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 23692378.
    27. 27)
      • 25. Zhong, T., Li, Y., Wu, N., et al: ‘A study on the stationarity and gaussianity of the background noise in land-seismic prospecting’, Geophysics, 2015, 80, (4), pp. V67V82.
    28. 28)
      • 20. Kathirvel, P., Manikandan, M.S., Maya, P., et al: ‘Detection of power quality disturbances with overcomplete dictionary matrix and ℓ1-norm minimization’. IEEE Int. Conf. Power and Energy Systems, Chennai, India, December, 2011, pp. 16.
    29. 29)
      • 29. Zhong, T., Li, Y., Wu, N., et al: ‘Statistical properties of the random noise in seismic data’, J. Appl. Geophys., 2015, 118, pp. 8491.
    30. 30)
      • 19. Huang, N., Zhang, S., Cai, G., et al: ‘Power quality disturbances recognition based on a multiresolution generalized S-transform and a PSO-improved decision tree’, Energies, 2015, 8, (1), pp. 549572.
    31. 31)
      • 15. Tong, W., Song, X., Lin, J., et al: ‘Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines’. IEEE 8th Int. Conf. on Signal Processing, Guilin, China, November, 2006.
    32. 32)
      • 1. Wasiak I. Pawelek, R., Mienski, R.: ‘Energy storage application in low-voltage microgrids for energy management and power quality improvement’, IET Gener. Transm. Distrib., 2014, 8, (8), pp. 463472.
    33. 33)
      • 16. Biswal, B., Biswal, M., Mishra, S., et al: ‘Automatic classification of power quality events using balanced neural tree’, IEEE Trans. Ind. Electron., 2013, 61, (1), pp. 521530.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5780
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5780
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address