Power-quality disturbance recognition based on time-frequency analysis and decision tree

Power-quality disturbance recognition based on time-frequency analysis and decision tree

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The quality of electric power has become an important issue for electric utility companies and their customers. With the extensive application of micro-grid technologies, power quality (PQ) disturbances are more likely to affect users; thus, research on the recognition of PQ disturbances has attracted increased attention. This study presents a novel PQ disturbance-recognition algorithm, based on time-frequency (TF) analysis and a decision tree (DT) classifier. The proposed method requires fewer feature statistics compared to the S-transform-based approach for PQ disturbance identification. In this study, feature statistics extracted using TF analysis are trained by a DT classifier to perform the automatic classification of PQ disturbances. As the proposed methodology can efficiently identify PQ disturbances, the performance of the DT classifier can be ensured. In addition, the influence of noise is investigated, and 12 types of noisy disturbance, with signal-to-noise ratios of 30–50dB, are considered for the classification problem. Finally, the proposed method is compared with other popular proposed disturbance-recognition algorithms in terms of detection accuracy. The experimental results reveal that the proposed method can effectively detect and classify different PQ disturbances.


    1. 1)
      • 1. Wasiak I. Pawelek, R., Mienski, R.: ‘Energy storage application in low-voltage microgrids for energy management and power quality improvement’, IET Gener. Transm. Distrib., 2014, 8, (8), pp. 463472.
    2. 2)
      • 2. Camarena-Martinez, D., Valtierra-Rodriguez, M., Perez-Ramirez, C.A., et al: ‘Novel downsampling empirical mode decomposition approach for power quality analysis’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 23692378.
    3. 3)
      • 3. Bíscaro, A.A.P., Pereira, R.A.F., Kezunovic, M., et al: ‘Integrated fault location and power-quality analysis in electric power distribution systems’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 428436.
    4. 4)
      • 4. Saini, M.K., Kapoor, R.: ‘Classification of power quality events – a review’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 1119.
    5. 5)
      • 5. Seera, M., Lim, C.P., Chu, K.L., et al: ‘Power quality analysis using a hybrid model of the fuzzy min–max neural network and clustering tree’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 27, (12), pp. 27602767.
    6. 6)
      • 6. Tang, K., Shen, C., Chen, W., et al: ‘Microgrid modeling and simulation scenario design for power quality analysis’. IEEE PES Asia-Pacific Power and Energy Engineering Conf., Queensland, Australia, November, 2015, pp. 15.
    7. 7)
      • 7. Farzanehrafat, A., Watson, N.R.: ‘Power quality state estimator for smart distribution grids’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21832191.
    8. 8)
      • 8. Granados-Lieberman, D., Romero-Troncoso, R.J., Osornio-Rios, R.A., et al: ‘Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review’, IET Gener. Transm. Distrib., 2011, 5, (4), pp. 519529.
    9. 9)
      • 9. Coppola, L., Liu, Q., Buso, S., et al: ‘Wavelet transform as an alternative to the short-time Fourier transform for the study of conducted noise in power electronics’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 880887.
    10. 10)
      • 10. Gu, Y.H., Bollen, M.H.J.: ‘Time-frequency and time-scale domain analysis of voltage disturbances’, IEEE Trans. Power Deliv., 2000, 15, (4), pp. 12791284.
    11. 11)
      • 11. Tse, N.C.F., Chan, J.Y.C., Lau, W.H., et al: ‘Hybrid wavelet and Hilbert transform with frequency-shifting decomposition for power quality analysis’, IEEE Trans. Instrum. Meas., 2012, 61, (12), pp. 32253233.
    12. 12)
      • 12. Decanini, J.G.M.S., Tonelli-Neto, M.S., Malange, F.C.V., et al: ‘Detection and classification of voltage disturbances using a fuzzy-ARTMAP-wavelet network’, Electr. Power Syst. Res., 2011, 81, (12), pp. 20572065.
    13. 13)
      • 13. Masoum, M.A.S., Jamali, S., Ghaffarzadeh, N. ‘Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks’, IET Sci. Meas. Technol., 2010, 4, (4), pp. 193205.
    14. 14)
      • 14. Gaing, Z.L.: ‘Wavelet-based neural network for power disturbance recognition and classification’, IEEE Trans. Power Deliv., 2004, 19, (4), pp. 15601568.
    15. 15)
      • 15. Tong, W., Song, X., Lin, J., et al: ‘Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines’. IEEE 8th Int. Conf. on Signal Processing, Guilin, China, November, 2006.
    16. 16)
      • 16. Biswal, B., Biswal, M., Mishra, S., et al: ‘Automatic classification of power quality events using balanced neural tree’, IEEE Trans. Ind. Electron., 2013, 61, (1), pp. 521530.
    17. 17)
      • 17. Rodríguez, A., Aguado, J.A., Martín, F., et al: ‘Rule-based classification of power quality disturbances using S-transform’, Electr. Power Syst. Res., 2012, 86, (4), pp. 113121.
    18. 18)
      • 18. Fangwei, X.U., Yang, H., Maoqing, Y.E., et al: ‘Classification for power quality short duration disturbances based on generalized S-transform’, Proc. CSEE, 2012, 32, (4), pp. 7784.
    19. 19)
      • 19. Huang, N., Zhang, S., Cai, G., et al: ‘Power quality disturbances recognition based on a multiresolution generalized S-transform and a PSO-improved decision tree’, Energies, 2015, 8, (1), pp. 549572.
    20. 20)
      • 20. Kathirvel, P., Manikandan, M.S., Maya, P., et al: ‘Detection of power quality disturbances with overcomplete dictionary matrix and ℓ1-norm minimization’. IEEE Int. Conf. Power and Energy Systems, Chennai, India, December, 2011, pp. 16.
    21. 21)
      • 21. Manikandan, M.S., Samantaray, S.R., Kamwa, I.: ‘Detection and classification of power quality disturbances using sparse signal decomposition on hybrid dictionaries’, IEEE Trans. Instrum. Meas., 2014, 64, (1), pp. 2738.
    22. 22)
      • 22. Janik, P., Lobos, T.: ‘Automated classification of power-quality disturbances using SVM and RBF networks’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16631669.
    23. 23)
      • 23. Panigrahi, B.K., Pandi, V.R.: ‘Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm’, IET Gener. Transm. Distrib., 2009, 3, (3), pp. 296306.
    24. 24)
      • 24. Bayram, M., Baraniuk, R.: ‘Multilple window time-varying spectrum estimation’, in Fitzgerald, W.J., Smith, R.L., Walden, A.T., et al (Eds.): ‘Nonlinear and nonstationary signal processing’ (Cambridge University Press, Cambridge, UK, 2000), pp. 292316.
    25. 25)
      • 25. Zhong, T., Li, Y., Wu, N., et al: ‘A study on the stationarity and gaussianity of the background noise in land-seismic prospecting’, Geophysics, 2015, 80, (4), pp. V67V82.
    26. 26)
      • 26. Piaggi, P., Menicucci, D., Gentili, C., et al: ‘Adaptive filtering for removing nonstationary physiological noise from resting state fMRI BOLD signals’. 11th Int. Conf. on Intelligent Systems Design and Applications, Córdoba, Spain, November, 2013, pp. 237241.
    27. 27)
      • 27. Tomasi, B., Preisig, J., Deane, G.B., et al: ‘A study on the wide-sense stationarity of the underwater acoustic channel for non-coherent communication systems’. 17th European Wireless 2011 - Sustainable Wireless Technologies. VDE, Vienna, Austria, April, 2011, pp. 16.
    28. 28)
      • 28. Zhong, T., Li, Y., Wu, N., et al: ‘Statistical analysis of background noise in seismic prospecting’, Geophys. Prospect., 2015, 63, (5), pp. 11611174.
    29. 29)
      • 29. Zhong, T., Li, Y., Wu, N., et al: ‘Statistical properties of the random noise in seismic data’, J. Appl. Geophys., 2015, 118, pp. 8491.
    30. 30)
      • 30. Muhlbacher, T., Linhardt, L., Moller, T., et al: ‘TreePOD: sensitivity-aware selection of pareto-optimal decision trees’, IEEE Trans. Vis. Comput. Graph., 2017, PP, (99), pp. 11.
    31. 31)
      • 31. He, S., Li, K., Zhang, M.A.: ‘Real-time power quality disturbances classification using hybrid method based on S-transform and dynamics’, IEEE Trans. Instrum. Meas., 2013, 62, (9), pp. 24652475.
    32. 32)
      • 32. Thomson, D.J.: ‘Spectrum estimation and harmonic analysis’, Proc. IEEE, 2005, 70, (9), pp. 10551096.
    33. 33)
      • 33. Edgar, E.P.: ‘Fractal market analysis: applying chaos theory to investment and economics’, Chaos Theory, 1994, 34, (2), pp. 343345.

Related content

This is a required field
Please enter a valid email address