http://iet.metastore.ingenta.com
1887

Feasibility analysis of reduced-scale visual corona tests in high-voltage laboratories

Feasibility analysis of reduced-scale visual corona tests in high-voltage laboratories

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Corona is a critical effect that must be considered during the design and optimisation stages of high-voltage hardware such as substation connectors, since due to the harmful effects, corona threats power systems reliability. Visual corona tests allow detecting and identifying the critical corona points on the surface of substation connectors, so corrective actions can be applied for product optimisation. This article focuses on reduced-scale (RS) visual corona tests intended to verify and optimise the behaviour of such high-voltage hardware. RS visual corona tests allow reducing the voltage to be applied, laboratory size, instrumentation requirements, assembly, and test times, and finally the overall costs of the tests compared to standard corona tests carried out in large-size high-voltage laboratories. A hybrid approach combining experimental tests and finite element method (FEM) simulations is presented, which allows obtaining the equivalent visual corona onset voltage between RS and full-scale tests. Although the article focuses on the analysis of aluminium substation connectors, the proposed approach can be applied to many other hardware intended for high-voltage applications.

References

    1. 1)
      • 1. Capelli, F., Riba, J.-R., Pérez, J.: ‘Three-Dimensional finite-element analysis of the short-time and peak withstand current tests in substation connectors’, Energies, 2016, 9, (6), p. 418.
    2. 2)
      • 2. Abomailek, C., Capelli, F., Riba, J.-R., et al: ‘Transient thermal modelling of substation connectors by means of dimensionality reduction’, Appl. Therm. Eng., 2017, 111, pp. 562572.
    3. 3)
      • 3. Yang, Q., Chen, Y., Sima, W., et al: ‘Measurement and analysis of transient overvoltage distribution in transformer windings based on reduced-scale model’, Electr. Power Syst. Res., 2016, 140, pp. 7077.
    4. 4)
      • 4. Coutinho, C.P., Baptista, A.J., Dias Rodrigues, J.: ‘Reduced scale models based on similitude theory: A review up to 2015’, Eng. Struct., 2016, 119, pp. 8194.
    5. 5)
      • 5. Li, H., Shu, N., Wu, X., et al: ‘Scale modeling on the overheat failure of Bus contacts in gas-insulated switchgears’, IEEE Trans. Magn., 2014, 50, (2), pp. 305308.
    6. 6)
      • 6. Urban, R.G., Reader, H.C., Holtzhausen, J.P.: ‘Small corona cage for wideband HVac radio noise studies: rationale and critical design’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 11501157.
    7. 7)
      • 7. Chambers, J.: ‘Modeling flight: The role of dynamically scale’ (NASA, Washington, USA, 2015).
    8. 8)
      • 8. Lebental, S., Hall, K.C., Bliss, D.B., et al: ‘Optimization of the aerodynamics of small-scale flapping aircraft in Hover’, Duke University, 2008.
    9. 9)
      • 9. Meinert, F., Johannessen, K., Saito, F., et al: ‘A correlation study of wind tunnels for reduced-scale automotive aerodynamic development’, SAE Int. J. Passeng. Cars - Mech. Syst., 2016, 9, (2), pp. 2016-011598.
    10. 10)
      • 10. Alnaqi, A.A., Barton, D.C., Brooks, P.C.: ‘Reduced scale thermal characterization of automotive disc brake’, Appl. Therm. Eng., 2015, 75, pp. 658668.
    11. 11)
      • 11. Hernandez-Guiteras, J., Riba, J.R., Casals-Torrens, P., et al: ‘Feasibility analysis of reduced-scale air breakdown tests in high voltage laboratories combined with the use of scaled test cages’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, pp. 15901597.
    12. 12)
      • 12. Rabe, S., Schartel, B.: ‘The rapid mass calorimeter: understanding reduced-scale fire test results’, Polym. Test., 2017, 57, pp. 165174.
    13. 13)
      • 13. Sudhoff, S.D., Pekarek, S.D., Swanson, R.R., et al: ‘A reduced scale naval DC microgrid to support electric ship research and development’. 2015 IEEE Electric Ship Technologies Symp. (ESTS), Washington DC, USA, 2015, pp. 464471.
    14. 14)
      • 14. Lu, F.-C., You, S.-H., Liu, Y.-P., et al: ‘AC conductors’ Corona-loss calculation and analysis in corona cage’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 877885.
    15. 15)
      • 15. Sebo, S.A., Kasten, D.G., Zhao, T., et al: ‘Development of reduced-scale line modeling for the study of hybrid corona’. Proc. of IEEE Conf. on Electrical Insulation and Dielectric Phenomena - (CEIDP ‘93), Pocono Manor, PA, USA, 1993, pp. 538543.
    16. 16)
      • 16. Bian, X., Yu, D., Meng, X., et al: ‘Corona-generated space charge effects on electric field distribution for an indoor corona cage and a monopolar test line’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (5), pp. 17671778.
    17. 17)
      • 17. Naidu, M.S., Kamaraju, V.: ‘High voltage engineering’ (Tata McGraw-Hill Publishing Company Limited, New York, 1996).
    18. 18)
      • 18. Nakano, Y., Sunaga, Y.: ‘Availability of corona cage for predicting audible noise generated from HVDC transmission line’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 14221431.
    19. 19)
      • 19. Xie, L., Zhao, L., Lu, J., et al: ‘Altitude correction of radio interference of HVDC transmission lines part I: converting method of measured data’, IEEE Trans. Electromagn. Compat., 2017, 59, (1), pp. 275283.
    20. 20)
      • 20. Zhao, L., Cui, X., Xie, L., et al: ‘Altitude correction of radio interference of HVdc transmission lines part II: measured data analysis and altitude correction’, IEEE Trans. Electromagn. Compat., 2017, 59, (1), pp. 284292.
    21. 21)
      • 21. Yin, F., Farzaneh, M., Jiang, X.: ‘Corona investigation of an energized conductor under various weather conditions’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 462470.
    22. 22)
      • 22. Zhang, C., Yi, Y., Wang, L.: ‘Positive dc corona inception on dielectric-coated stranded conductors in air’, IET Sci. Meas. Technol., 2016, 10, (6), pp. 557563.
    23. 23)
      • 23. Hernández-Guiteras, J., Riba, J.-R., Casals-Torrens, P.: ‘Determination of the corona inception voltage in an extra high voltage substation connector’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 8288.
    24. 24)
      • 24. Li, Z.-X., Fan, J.-B., Yin, Y., et al: ‘Numerical calculation of the negative onset corona voltage of high-voltage direct current bare overhead transmission conductors’, IET Gener. Transm. Distrib., 2010, 4, (9), p. 1009.
    25. 25)
      • 25. Riba, J.-R., Abomailek, C., Casals-Torrens, P., et al: ‘Simplification and cost reduction of visual corona tests’, IET Gener. Transm. Distrib., 2018, 12, (4), pp. 834841.
    26. 26)
      • 26. ANSI/NEMA: ‘ANSI/NEMA CC1: ‘electric power connection for substation’. Rosslyn, Virginia, 2009.
    27. 27)
      • 27. International Electrotechnical Commission: ‘IEC 60270:2000 High-voltage test techniques - partial discharge measurements’, 3.0. International Electrotechnical Commission, 2000.
    28. 28)
      • 28. Qiu, Z., Ruan, J., Huang, D., et al: ‘Prediction study on positive DC corona onset voltage of rod-plane air gaps and its application to the design of valve hall fittings’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 15191526.
    29. 29)
      • 29. Souza, A.L., Lopes, I.J.S.: ‘Experimental investigation of corona onset in contaminated polymer surfaces’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (2), pp. 13211331.
    30. 30)
      • 30. Prasad, D.S., Reddy, B.S.: ‘Digital image processing techniques for estimating power released from the corona discharges’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (1), pp. 7582.
    31. 31)
      • 31. Prasad, D.S., Reddy, B.S.: ‘Study of corona degradation of polymeric insulating samples using high dynamic range imaging technique’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 11691177.
    32. 32)
      • 32. Hu, Q., Shu, L., Jiang, X., et al: ‘Effects of air pressure and humidity on the corona onset voltage of bundle conductors’, IET Gener. Transm. Distrib., 2011, 5, (6), p. 621.
    33. 33)
      • 33. Yang, F., Cheng, P., Luo, H., et al: ‘3-D thermal analysis and contact resistance evaluation of power cable joint’, Appl. Therm. Eng., 2016, 93, pp. 11831192.
    34. 34)
      • 34. IEEE: ‘IEEE std 1829-2017 - IEEE guide for conducting Corona tests on hardware for overhead transmission lines and substations’, 2017.
    35. 35)
      • 35. Jadidian, J., Zahn, M., Lavesson, N., et al: ‘Effects of impulse voltage polarity, peak amplitude, and rise time on streamers initiated from a needle electrode in transformer oil’, IEEE Trans. Plasma Sci., 2012, 40, (3), pp. 909918.
    36. 36)
      • 36. Dordizadeh, P., Adamiak, K., Peter Castle, G.S.: ‘Numerical investigation of the formation of trichel pulses in a needle-plane geometry’, J. Phys. D. Appl. Phys., 2015, 48, (41), p. 415203.
    37. 37)
      • 37. Comsol: ‘COMSOL 4.3 multiphysics user's guide’, COMSOL, 2012, p. 1292.
    38. 38)
      • 38. Hernández-Guiteras, J., Riba, J.-R., Romeral, L.: ‘Redesign process of a 765kVRMS AC substation connector by means of 3D-FEM simulations’, Simul. Model. Pract. Theory, 2014, 42, pp. 111.
    39. 39)
      • 39. IEEE: ‘IEEE std 100-2000 The authoritative dictionary of IEEE standards terms, seventh edition’, IEEE Std 100-2000, 2000, pp. 11362.
    40. 40)
      • 40. IEEE: ‘IEEE std 4-2013 (revision of IEEE Std 4-1995) IEEE standard for high-voltage testing techniques’, IEEE Std 4-2013 (Revision of IEEE Std 4-1995), 2013, pp. 1213.
    41. 41)
      • 41. The Central Station Engineers of The Westinghouse Eectric and Corporation: ‘Electrical transmission and distribution reference book’ (Westinghouse, East Pittsburgh, Pennsylvania, 1964, 4th edn.).
    42. 42)
      • 42. Electric Power Research Institute: ‘Transmission line reference book 345 kV and above’ (Electric Power Research Institute (EPRI), Palo Alto, CA, 2014, 2014 edn.).
    43. 43)
      • 43. Cigré Working Group 36.01: ‘ADDENDUM to CIGRE document No 20 (1974): interferences produced By corona effect Of electric systems’, 1974.
    44. 44)
      • 44. Carsimamovic, A., Mujezinovic, A., Carsimamovic, S., et al: ‘Calculation of the corona onset voltage gradient under variable atmospheric correction factors’. IEEE EUROCON 2015 - Int. Conf. on Computer as a Tool (EUROCON), Salamanca, Spain, 2015, pp. 15.
    45. 45)
      • 45. Fridman, A., Fridman, A., Kennedy, L.A.: ‘Plasma physics and engineering’ (CRC Press, Boca Raton, FL, USA, 2011, 2nd edn.).
    46. 46)
      • 46. Peek, F.W.: ‘The Law of Corona and the dielectric strength of Air-II’, Proc. Am. Inst. Electr. Eng., 1911, XXXI, (7), pp. 10511092.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5756
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5756
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address