Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Regulation of active and reactive power of a virtual oscillator controlled inverter

Regulation of active and reactive power of a virtual oscillator controlled inverter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Utilisation of variable distributed energy sources in a microgrid necessitates control of active power and is enhanced by the control of reactive power. A control technique to regulate the active and reactive power of a virtual oscillator controlled inverter is presented. Current feedback gain of the virtual oscillator controlled inverter is used to regulate the active or reactive power. In order to achieve the desired power set-point, a PI controller is used to tune the current feedback gain. An approximate local stability analysis is presented using the system linearisation and eigenvalues analysis. Constraints on the virtual oscillator controller and system parameters are identified to ensure the stability of the system. Global stability of the system is investigated by determining a Lyapunov function using the sum-of-squares technique. Simulation and experimental results are presented for both the cases of active and reactive power control of a virtual oscillator controlled inverter to verify the analytical analysis and to demonstrate the effectiveness of the proposed control scheme.

References

    1. 1)
      • 24. Johnson, B.B., Dhople, S.V., Hamadeh, A.O., et al: ‘Synchronization of parallel single-phase inverters with virtual oscillator control’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 61246138.
    2. 2)
      • 20. Teodorescu, R., Blaabjerg, F., Liserre, M., et al: ‘Proportional-resonant controllers and filters for grid-connected voltage-source converters’, IEE Proc. Electr. Power Appl., 2006, 153, (5), pp. 750762.
    3. 3)
      • 35. Soni, N., Doolla, S., Chandorkar, M.C.: ‘Improvement of transient response in microgrids using virtual inertia’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 18301838.
    4. 4)
      • 11. Shuai, Z., Sun, Y., Shen, Z.J., et al: ‘Microgrid stability: classification and a review’, Renew. Sust. Energy Rev., 2016, 58, pp. 167179.
    5. 5)
      • 2. Lasseter, R.H.: ‘Microgrids’. Power Engineering Society Winter Meeting, 2002, New York City, NY, USA, vol. 1, 2002, pp. 305308.
    6. 6)
      • 23. Teodorescu, R., Blaabjerg, F., Liserre, M.: ‘Proportional-resonant controllers. A new breed of controllers suitable for grid-connected voltage-source converters’, Proc. Optim., 2004, 3, pp. 914.
    7. 7)
      • 22. Timbus, A.V., Ciobotaru, M., Teodorescu, R., et al: ‘Adaptive resonant controller for grid-connected converters in distributed power generation systems’. Twenty-First Annual Applied Power Electronics Conf. and Exposition, 2006 (APEC'06), Dallas, TX, USA, 2006, pp. 6pp.
    8. 8)
      • 5. Basak, P., Chowdhury, S., nee Dey, S.H., et al: ‘A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid’, Renew. Sust. Energ. Rev., 2012, 16, (8), pp. 55455556.
    9. 9)
      • 9. Lopes, J.P., Hatziargyriou, N., Mutale, J., et al: ‘Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities’, Electr. Power Syst. Res., 2007, 77, (9), pp. 11891203.
    10. 10)
      • 19. Engler, A., Soultanis, N.: ‘Droop control in LV-grids’. 2005 Int. Conf. on Future Power Systems, Amsterdam, Netherlands, 2005, pp. 6pp.
    11. 11)
      • 32. Matas, J., Castilla, M., de Vicuna, L.G., et al: ‘Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29933002.
    12. 12)
      • 16. De Brabandere, K., Bolsens, B., Van den Keybus, J., et al: ‘A voltage and frequency droop control method for parallel inverters’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11071115.
    13. 13)
      • 40. Bauer, N.W., Maas, P.J., Heemels, W.: ‘Stability analysis of networked control systems: a sum of squares approach’, Automatica, 2012, 48, (8), pp. 15141524.
    14. 14)
      • 29. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    15. 15)
      • 36. Hu, S.-H., Kuo, C.-Y., Lee, T.-L., et al: ‘Droop-controlled inverters with seamless transition between islanding and grid-connected operations’. Energy Conversion Congress and Exposition (ECCE), 2011, Phoenix, AZ, USA, 2011, pp. 21962201.
    16. 16)
      • 43. Wang, L., Chai, S., Yoo, D., et al: ‘PID and predictive control of electrical drives and power converters using MATLAB/Simulink’ (John Wiley & Sons, Singapore, 2015).
    17. 17)
      • 37. Ali, M., Nurdin, H.I., Fletcher, J.E.: ‘Output power regulation of a virtual oscillator controlled inverter’. 2018 18th Int. Conf. on Power Electronics and Motion Control, Budapest, Hungary, 2018.
    18. 18)
      • 7. Kaper, S.K., Choudhary, N.K.: ‘A review of power management and stability issues in microgrid’. IEEE Int. Conf. on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016, pp. 16.
    19. 19)
      • 15. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    20. 20)
      • 10. Shah, R., Mithulananthan, N., Bansal, R., et al: ‘A review of key power system stability challenges for large-scale pv integration’, Renew. Sust. Energy Rev., 2015, 41, pp. 14231436.
    21. 21)
      • 34. Brucoli, M., Green, T.C., McDonald, J.D.: ‘Modelling and analysis of fault behaviour of inverter microgrids to aid future fault detection’. IEEE Int. Conf. on System of Systems Engineering, 2007 (SoSE'07), San Antonio, TX, USA, 2007, pp. 16.
    22. 22)
      • 14. Coster, E.J., Myrzik, J.M., Kruimer, B., et al: ‘Integration issues of distributed generation in distribution grids’, Proc. IEEE, 2011, 99, (1), pp. 2839.
    23. 23)
      • 13. Bitar, E., Khargonekar, P.P., Poolla, K.: ‘Systems and control opportunities in the integration of renewable energy into the smart grid’, IFAC Proc. Vol., 2011, 44, (1), pp. 49274932.
    24. 24)
      • 30. Majumder, R., Chaudhuri, B., Ghosh, A., et al: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808.
    25. 25)
      • 42. Boyd, S., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory, vol. 15’ (SIAM, Philadelphia, Pennsylvania, 1994).
    26. 26)
      • 18. Barklund, E., Pogaku, N., Prodanovic, M., et al: ‘Energy management in autonomous microgrid using stability-constrained droop control of inverters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23462352.
    27. 27)
      • 3. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    28. 28)
      • 6. Majumder, R.: ‘Some aspects of stability in microgrids’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 32433252.
    29. 29)
      • 41. Hazra, P., Hadidi, R., Makram, E.: ‘Dynamic study of virtual oscillator controlled inverter based distributed energy source’. North American Power Symp. (NAPS), 2015, Charlotte, NC, USA, 2015, pp. 16.
    30. 30)
      • 1. Chowdhury, S., Crossley, P., Chowdhury, S.P.: ‘Microgrids and active distribution networks’ (The Institution of Engineering and Technology, London, 2009).
    31. 31)
      • 39. Papachristodoulou, A., Prajna, S.: ‘On the construction of Lyapunov functions using the sum of squares decomposition’. 2002 Proc. 41st IEEE Conf. on Decision and Control, Las Vegas, NV, USA, USA, 2002, vol. 3, pp. 34823487.
    32. 32)
      • 21. Cha, H., Vu, T.-K., Kim, J.-E.: ‘Design and control of proportional-resonant controller based photovoltaic power conditioning system’. Energy Conversion Congress and Exposition 2009 (ECCE 2009), San Jose, CA, USA, 2009, pp. 21982205.
    33. 33)
      • 27. Johnson, B.B., Sinha, M., Ainsworth, N.G., et al: ‘Synthesizing virtual oscillators to control islanded inverters’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 60026015.
    34. 34)
      • 38. Papachristodoulou, A., Prajna, S.: ‘A tutorial on sum of squares techniques for systems analysis’. American Control Conf., 2005. Proc. of the 2005, Portland, OR, USA, USA, 2005, pp. 26862700.
    35. 35)
      • 12. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’, IFAC Proc. Vol., 2014, 47, (3), pp. 72907297.
    36. 36)
      • 8. Tielens, P., Van Hertem, D.: ‘The relevance of inertia in power systems’, Renew. Sust. Energy. Rev., 2016, 55, pp. 9991009.
    37. 37)
      • 26. Johnson, B.B., Dhople, S.V., Hamadeh, A.O., et al: ‘Synchronization of nonlinear oscillators in an lti electrical power network’, IEEE Trans. Circ. Syst. I Regul. Pap., 2014, 61, (3), pp. 834844.
    38. 38)
      • 31. Han, H., Liu, Y., Sun, Y., et al: ‘An improved droop control strategy for reactive power sharing in islanded microgrid’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 31333141.
    39. 39)
      • 25. Johnson, B.B., Dhople, S.V., Cale, J.L., et al: ‘Oscillator-based inverter control for islanded three-phase microgrids’, IEEE J. Photovolt., 2014, 4, (1), pp. 387395.
    40. 40)
      • 17. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled ac and dc microgrids–a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172.
    41. 41)
      • 33. Guerrero, J.M., Matas, J., de Vicuna, L.G., et al: ‘Decentralized control for parallel operation of distributed generation inverters using resistive output impedance’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 9941004.
    42. 42)
      • 4. Hatziargyriou, N.: ‘Microgrids: architectures and control’ (John Wiley & Sons, Chichester, West Sussex, U. K., 2014).
    43. 43)
      • 28. Sinha, M., Dörfler, F., Johnson, B.B., et al: ‘Uncovering droop control laws embedded within the nonlinear dynamics of van der pol oscillators’, IEEE Trans. Control Netw. Syst., 2017, 4, (2), pp. 347358.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5752
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5752
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address