Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Power management and operational planning of multiport HPCS for residential applications

Renewable energy integration to the power grid has seen a tremendous rise in last few years. A novel hybrid AC and DC bus layout (i.e. medium-voltage DC bus of 380 V and low-voltage DC bus of 48 or 12 V DC) for the residential consumer premises has been proposed in this study. This would enable the consumer to directly connect DC loads to the system, without the need of an individual power conversion device. This study summarises the strategical operational modes of the proposed hybrid power conditioning system (HPCS) for multiple distributed energy resources (DER) integrated residential premises located within urban/rural area. Modified HPCS converter control strategy has been proposed, such that the system operation is efficient and self-adaptive in both, grid forming (or, islanded) and feeding (or, grid connected) modes. System is configured by using a single power conditioning unit, capable of performing wide range of operations, such as, multiple DER interface, battery power management, grid power control and accessibility to AC and DC household loads at the desired voltage levels. Performance of the designed system has been tested via simulation and experimental studies.

References

    1. 1)
      • 20. Xia, Y., Ahmed, K.H., Williams, B.W.: ‘A new maximum power point tracking technique for permanent magnet synchronous generator basedwind energy conversion system’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 36093620.
    2. 2)
      • 19. Koutroulis, E., Blaabjerg, F.: ‘Overview of maximum power point tracking techniques for photovoltaic energy production systems’, J. Electr. Power Compon. Syst., 2015, 43, (12), pp. 13291351.
    3. 3)
      • 24. Gudey, S.K., Gupta, R.: ‘Recursive fast terminal sliding mode control in voltage source inverter for a low voltage microgrid system’, IET Gener. Trans. Distrib., 2016, 10, (7), pp. 15361543.
    4. 4)
      • 17. Sun, Q., Zhang, Y., He, H., et al: ‘A novel energy function – based stability evaluation and nonlinear control approach for energy internet’, IEEE Trans. Smart Grid, 2015, 8, (3), pp. 11951210.
    5. 5)
      • 2. Das, K.N.: ‘India's Modi raises solar investment target to $ 100 bln by 2022’, Ministry of New and Renewable energy (MNRE) Report, July 2016.
    6. 6)
      • 6. Papadaskalopoulos, D., Pudjianto, D., Strbac, G.: ‘Decentralized coordination of microgrids with flexible demand and energy storage’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 14061414.
    7. 7)
      • 22. Chang, C.H., Lin, Y.H., Chen, Y.M., et al: ‘Simplified reactive power control for single-phase grid-connected photovoltaic inverters’, IEEE Trans. Ind. Electron., 2013, 61, (5), pp. 22862296.
    8. 8)
      • 7. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    9. 9)
      • 18. Zhang, H., Li, Y., Gao, D.W., et al: ‘Distributed optimal energy management for energy internet’, IEEE Trans. Ind. Inform., 2017, 13, (6), pp. 30813097.
    10. 10)
      • 1. Scheme wise physical progress in 2017–18’, Ministry of New and Renewable Energy (MNRE) Report, March 2018, https://mnre.gov.in/file-manager/annual-report/2017-2018/EN/index.html.
    11. 11)
      • 3. Patrao, I., Figueres, E., Garcera, G., et al: ‘Microgrid architectures for low voltage distributed generation’, Renew. Sust. Energy Rev., 2015, 43, pp. 415424.
    12. 12)
      • 12. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    13. 13)
      • 9. Kanchev, H., Lu, D., Colas, F., et al: ‘Energy management and operational planning of a microgrid with a PV - based active generator for smart grid applications’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45834592.
    14. 14)
      • 11. Kim, S.T., Bae, S., Kang, Y.C., et al: ‘Energy management based on the photovoltaic HPCS with an energy storage device’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 46084617.
    15. 15)
      • 5. Augustine, S., Mishra, M.K., Lakshminarasamma, N.: ‘Adaptive droop control strategy for load sharing and circulating current minimization in low-voltage standalone DC microgrid’, IEEE Trans. Sustain. Energy, 2017, 6, (1), pp. 132141.
    16. 16)
      • 4. Elsayed, A.T., Mohamed, A.A., Mohammed, O.A.: ‘DC microgrids and distribution systems: an overview’, Electr. Power Syst. Res., 2014, 119, pp. 407417.
    17. 17)
      • 23. Zhang, L., Qiu, S.: ‘Analysis and implentation of sliding mode control for full bridge inverter’, IEEE Int. Conf. Commun., Circuits Syst., 2005, 2, pp. 13801384.
    18. 18)
      • 8. Paleta, R., Pina, A., Silva, C.A.S.: ‘Polygeneration energy container: designing and testing energy services for remote developing communities’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 13481355.
    19. 19)
      • 10. Rani, B.I., Ilango, G.S., Nagamani, C.: ‘Control strategy for power flow management in a PV system supplying DC loads’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 31853194.
    20. 20)
      • 14. Malik, S.M., Ai, X., Sun, Y., et al: ‘Voltage and frequency control strategies of hybrid AC/DC microgrid: a review’, IET Gener. Trans. Distrib., 2017, 11, (2), pp. 303313.
    21. 21)
      • 16. Sun, Q., Han, R., Zhang, H., et al: ‘A multiagent – agent based consensus for distributed coordinated control of distributed generators in the energy internet’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 30063019.
    22. 22)
      • 13. Pashajavid, E., Shahnia, F., Ghosh, A.: ‘Provisional internal and external power exchange to support remote sustainable microgrids in the course of power deficiency’, IET Gener. Trans. Distrib., 2016, 11, (1), pp. 246260.
    23. 23)
      • 15. Yang, H., Pan, H., Luo, F., et al: ‘Operational planning of electric vechiles for balancing wind power and load fluctuations in a microgrid’, IEEE Trans. Sust. Energy, 2017, 8, (2), pp. 592604.
    24. 24)
      • 21. Gautam, S., Gupta, R.: ‘Switching frequency derivation for the cascaded multilevel inverter operating in current control mode using multiband hysteresis modulation’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 14801489.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5744
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5744
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address