access icon free Equivalent model considering frequency characteristics and renewable uncertainties for probabilistic power flow

The data is not always shared among sub-networks due to concerns about information privacy or difficulties in synchronous information exchange. It is difficult or even impossible to obtain the probabilistic power flow (PPF) by the centralised analysis. In this paper, an equivalent model considering static power–frequency characteristics (SPFCs) and renewable uncertainties is proposed. In this model, SPFCs of equivalent loads and generators are derived to retain SPFCs of original external loads and generators, respectively. In addition, probabilistic characteristics and correlations of equivalent loads are formulated based on Cholesky decomposition to preserve original external renewable uncertainties. The proposed model is further applied to PPF and then PPF can be solved via Monte Carlo simulation method, which makes that the PPF results can be obtained when the detailed data of the original external network cannot be shared. Owing to efficiently preserving the external SPFCs and renewable uncertainties in the proposed equivalent model, the accuracy of PPF results can be guaranteed. Simulation results of IEEE 14-bus and IEEE-118 bus systems demonstrate the effectiveness and superiority of the proposed equivalent model and its applications to PPF, compared with existing well known equivalent models and their applications to PPF.

Inspec keywords: load flow; renewable energy sources; data privacy; Monte Carlo methods; probability; power system security

Other keywords: Monte Carlo simulation method; static power-frequency characteristics; IEEE 14-bus system; IEEE-118 bus system; SPPF; probabilistic power flow; probabilistic characteristics; equivalent model; information privacy; renewable uncertainties; Cholesky decomposition; synchronous information exchange; equivalent loads

Subjects: Energy resources; Power system protection; Monte Carlo methods

References

    1. 1)
      • 6. Ren, Z., Li, W., Billinton, R., et al: ‘Probabilistic power flow analysis based on the stochastic response surface method’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 23072315.
    2. 2)
      • 25. Mahraby, H.A.M., Allan, R.N.: ‘Application of DC equivalents to the reliability evaluation of composite power system’, IEEE Trans. Power Syst., 1999, 14, (1), pp. 355361.
    3. 3)
      • 24. Zhang, W., Billinton, R.: ‘Application of an adequacy equivalent method in bulk power system reliability evaluation’, IEEE Trans. Power Syst., 1998, 13, (2), pp. 661666.
    4. 4)
      • 20. Dy Liacco, T.E., Savulescu, S.C., Ramarao, K.A.: ‘On-line topological equivalent of a power system’, IEEE Trans. Power Appl. Syst., 1978, 97, (5), pp. 15501563.
    5. 5)
      • 26. Audomovongseree, K., Eua-Apron, B.: ‘Composite system reliability evaluation using ac equivalent network’. Proc. IEEE Int. Conf. Power System Technology, Perth, WA, August 2000, pp. 751756.
    6. 6)
      • 16. Kumar, S., Billinton, R.: ‘Adequacy equivalents in composite power system evaluation’, IEEE Trans. Power Syst., 1988, 3, (3), pp. 11671173.
    7. 7)
      • 18. Tsai, S.J.S., Wong, K.H.: ‘On-line estimation of Thevenin equivalent with varying system states’. Proc. IEEE PES General Meeting, PA, USA, July 2008, pp. 17.
    8. 8)
      • 2. Sang, Y., Yang, B., Yao, W., et al: ‘Design and implementation of perturbation observer-based robust passivity-based control for VSC-MTDC systems considering offshore wind power integration’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 24152424.
    9. 9)
      • 10. Armaghani, S., Amjady, N., Abedinia, O.: ‘Security constrainted multi-period optimal power flow by a new enhanced artificial bee colony’, Appl. Soft Comput., 2015, 37, pp. 382395.
    10. 10)
      • 27. Lowery, C., O'Malley, M.: ‘Reserves in stochastic unit commitment: an Irish system case study’, IEEE. Trans. Sustain. Energy, 2015, 6, (3), pp. 10291038.
    11. 11)
      • 23. Dobrijević, Ð.M., Popvić, D.P.: ‘A unified external network equivalent in steady-state security assessment’, Facta Universitatis Ser. Electron. Energetics, 2010, 23, (2), pp. 179189.
    12. 12)
      • 1. Wang, C., Du, Z., Ni, Y.: ‘Coordinated predictive control for wind farm with BESS considering power despatching and equipment ageing’, IET Gener. Transm. Distrib., 2018, 12, (10), pp. 24062414.
    13. 13)
      • 3. Abedinia, O., Ghasemi, A., Ojaroudi, N.: ‘Improved time varying inertia weight PSO for solved economic load dispatch with subsidies and wind power effects’, Complexity, 2016, 21, (4), pp. 4049.
    14. 14)
      • 15. Dai, W., Yu, J., Liu, X., et al: ‘Two-tier static equivalent method of active distribution networks considering sensitivity, power loss and static load characteristics’, Int. J. Electr. Power Energy Syst., 2018, 100, pp. 193200.
    15. 15)
      • 29. Peng, S., Tang, J., Li, W.: ‘Probabilistic power flow for AC/VSC-MTDC hybrid grids considering rank correlation among diverse uncertainty sources’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40354044.
    16. 16)
      • 11. Abedinia, O., Amjady, N., Ghasemi, A., et al: ‘Solution of economic load dispatch problem via hybrid particle swarm optimization with time-varying acceleration coefficients and bacteria foraging algorithm techniques’, Int. Trans. Electr. Energy Syst., 2013, 23, (8), pp. 15041522.
    17. 17)
      • 17. Mou, X., Li, W., Li, Z.: ‘A preliminary study on the Thevenin equivalent impedance for power systems monitoring’. Proc. IEEE Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2011), Weihai, China, July 2011, pp. 730733.
    18. 18)
      • 13. Poon, K.K.Y., Emami, R., Bose, A., et al: ‘External data exchange issues for state estimation in power systems’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 849856.
    19. 19)
      • 30. Morales, J.M., Baringo, L., Conejo, A.J.: ‘Probabilistic power flow with correlated wind sources’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 641651.
    20. 20)
      • 14. Yu, J., Zhang, M., Li, W., et al: ‘Sufficient and necessary condition of sensitivity consistency in static equivalent methods’, IET Gener. Transm. Distrib., 2015, 9, (7), pp. 603608.
    21. 21)
      • 21. Min, L., Abur, A.: ‘Total transfer capability computation for multi-area power systems’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 11411147.
    22. 22)
      • 8. Wang, R., Zhang, H., Li, C., et al: ‘Dynamic power flow calculation method of power system with wind power’. Proc. IEEE Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2015), Changsha, China, March 2015, pp. 19871991.
    23. 23)
      • 19. Deckmann, S., Pizzolante, A., Monticelli, A., et al: ‘Numerical testing of power system load flow equivalents’, IEEE Trans. Power Appl. Syst., 1980, 99, (6), pp. 22922300.
    24. 24)
      • 9. Deng, S., Zhang, B., Yu, J., et al: ‘Reliability evaluation based on equivalent method of sensitivity consistency and component particularity representation’. Proc. 2016 Int. Conf. Probabilistic Methods Applied to Power Systems (PMPAS), Beijing, China, December 2016, pp. 15.
    25. 25)
      • 4. Li, W.: ‘Probabilistic transmission system planning’ (IEEE Press/Wiley, Hoboken, NJ, USA, 2011, 1st edn.), pp. 5356.
    26. 26)
      • 7. Wang, K., Zhou, J., Yu, Y., et al: ‘A dynamic probabilistic load flow method considering random distribution of the unbalance power’. Proc. IEEE Int. Conf. Electricity Distribution (CICED), Xi'an, China, August 2016, pp. 17.
    27. 27)
      • 12. Abedinia, O., Amjadi, N., Kiani, K.: ‘Optimal complex economic load dispatch solution using particle swarm optimization with time varying acceleration coefficient’, Int. Rev. Electr. Eng., 2012, 7, (2), pp. 42494256.
    28. 28)
      • 28. Yu, P., Venkatesh, B.: ‘A practical real-time OPF method using new triangular approximate model of wind electric generators’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 20362046.
    29. 29)
      • 5. Ren, Z., Wang, K., Li, W., et al: ‘Probabilistic power flow analysis of power systems incorporating tidal current generation’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 11951203.
    30. 30)
      • 22. Yu, J., Zhang, M., Li, W.: ‘Static Equivalent Method Based on Component Particularity Representation and Sensitivity Consistency’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 24002408, doi:10.1109/TPWRS.2014.2300868.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5730
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5730
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading