http://iet.metastore.ingenta.com
1887

Water cycle algorithm-based optimal control strategy for efficient operation of an autonomous microgrid

Water cycle algorithm-based optimal control strategy for efficient operation of an autonomous microgrid

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel water cycle algorithm (WCA)-based optimal control strategy with the purpose of obtaining an efficient operation of an autonomous microgrid. The proposed control strategy is based on the proportional–integral (PI) controllers, which are optimally designed by the WCA. The optimisation process depends on the simulation-based optimisation approach and the criteria of integral squared error are chosen as an objective function. The control scheme is applied to an autonomous, decentralised, operation of a microgrid with multiple electronically interfaced distributed generation units and their local loads. In the islanded mode, the proposed controller is used to control the voltages of the islanded system despite the microgrid load and topological variability and uncertainties. The frequency of the islanded system is dictated through the use of an internal oscillator. The effectiveness of the proposed controller is compared with that obtained using the genetic algorithm-based PI controller. The validity of the proposed control strategy is extensively checked based on simulation studies in the PSCAD/EMTDC environment under different operating conditions of the microgrid. With the application of the WCA-based optimal PI control scheme, the microgrid operation can be further enhanced.

References

    1. 1)
      • 1. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    2. 2)
      • 2. Walling, R.A., Saint, R., Dugan, R.C., et al: ‘Summary of distributed resources impact on power delivery systems’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 16361644.
    3. 3)
      • 3. Hasanien, H.M., Matar, M.: ‘A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 158165.
    4. 4)
      • 4. Xu, Y., Yang, Z., Gu, W., et al: ‘Robust real-time distributed optimal control based energy management in a smart grid’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 15681579.
    5. 5)
      • 5. Rigo-Mariani, R., Sareni, B., Roboam, X.: ‘Integrated optimal design of a smart microgrid with storage’, IEEE Trans. Smart Grid, 2017, 8, (4), pp. 17621770.
    6. 6)
      • 6. Alizadeh, E., Birjandi, A.M., Hamzeh, M.: ‘Decentralized power sharing control strategy in LV microgrids under unbalanced load conditions’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16131623.
    7. 7)
      • 7. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    8. 8)
      • 8. Piagi, P., Lasseter, R.H.: ‘Autonomous control of microgrids’. IEEE Proc. IEEE PES General Meeting, Montreal, QC, Canada, June 2006.
    9. 9)
      • 9. Yang, X., Du, Y., Jianhui, S., et al: ‘An optimal secondary voltage control strategy for an islanded multibus microgrid’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (4), pp. 12361246.
    10. 10)
      • 10. Tang, X., Hu, X., Li, N., et al: ‘A novel frequency and voltage control method for islanded microgrid based on multienergy storages’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 410419.
    11. 11)
      • 11. Guo, F., Wen, C., Mao, J., et al: ‘Distributed cooperative secondary control for voltage unbalance compensation in an islanded microgrid’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 10781088.
    12. 12)
      • 12. Sasan, G., Mohammad, A., Saha, S.: ‘Control strategy for dispatchable distributed energy resources in islanded microgrids’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 141152.
    13. 13)
      • 13. Thomas, J., So Ping, L.: ‘Voltage and frequency control during microgrid islanding in a multi-area multi-microgrid system’, IET Gener. Transm. Distrib., 2017, 11, (6), pp. 15021512.
    14. 14)
      • 14. Lu, X., Chen, N., Wang, Y., et al: ‘Distributed impulsive control for islanded microgrids with variable communication delays’, IET Control Theory Appl., 2016, 10, (14), pp. 17321739.
    15. 15)
      • 15. Katiraei, F.: ‘Dynamic analysis and control of distributed energy resources in a micro-grid’. PhD dissertation, University of Toronto, 2005.
    16. 16)
      • 16. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831.
    17. 17)
      • 17. Chandorkar, M.C., Divan, D.M.: ‘Decentralized operation of distributed UPS systems’. Proc. IEEE Power Electronics, Drives and Energy Systems (PEDES), New Delhi, India, January 1996, pp. 565571.
    18. 18)
      • 18. Marwali, M.N., Jung, J.-W., Keyhani, A.: ‘Control of distributed generation systems–part II: load sharing control’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 15511561.
    19. 19)
      • 19. De Brabandere, K., Bolsens, B., Van den Keybus, J., et al: ‘A voltage and frequency droop control method for parallel inverters’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 11071115.
    20. 20)
      • 20. Pogaku, N., Prodanovic, M., Green, T.C.: ‘Modeling, analysis and testing of autonomous operation of an inverter-based microgrid’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 613625.
    21. 21)
      • 21. Guerrero, J.M., Hang, L., Uceda, J.: ‘Control of distributed uninterruptible power supply systems’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 28452859.
    22. 22)
      • 22. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A decentralized robust control strategy for multi-DER microgrids–part I: fundamental concepts’, IEEE Trans. Power Deliv., 2012, 21, (4), pp. 18431853.
    23. 23)
      • 23. Etemadi, A.H., Davison, E.J., Iravani, R.: ‘A generalized decentralized robust control of islanded microgrids’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 31023113.
    24. 24)
      • 24. Hasanien, H.M.: ‘Shuffled frog leaping algorithm-based static synchronous compensator for transient stability improvement of a grid-connected wind farm’, IET Renew. Power Gener., 2014, 8, (6), pp. 722730.
    25. 25)
      • 25. Hasanien, H.M.: ‘Design optimization of PID controller in automatic voltage regulator system using Taguchi combined genetic algorithm method’, IEEE Syst. J., 2013, 7, (4), pp. 825831.
    26. 26)
      • 26. Hasanien, H.M., Muyeen, S.M.: ‘A Taguchi approach for optimum design of proportional–integral controllers in cascaded control scheme’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 16361644.
    27. 27)
      • 27. Ambia, M.N., Hasanien, H.M., Al-Durra, A., et al: ‘Harmony search algorithm-based controller parameters optimization for a distributed-generation system’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 246255.
    28. 28)
      • 28. Hasanien, H.M., Muyeen, S.M.: ‘Design optimization of controller parameters used in variable speed wind energy conversion system by genetic algorithms’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 200208.
    29. 29)
      • 29. Soliman, M.A., Hasanien, H.M., Azazi, H.Z., et al: ‘Hybrid ANFIS-GA-based control scheme for performance enhancement of a grid-connected wind generator’, IET Renew. Power Gener., 2018, 12, (7), pp. 832843.
    30. 30)
      • 30. Hasanien, H.M.: ‘Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm’, Electr. Power Syst. Res., 2018, 157, pp. 168176.
    31. 31)
      • 31. Hasanien, H.M.: ‘Whale optimisation algorithm for automatic generation control of interconnected modern power systems including renewable energy sources’, IET Gener. Transm. Distrib., 2018, 12, (3), pp. 607614.
    32. 32)
      • 32. Islam, G., Muyeen, S.M., Al-Durra, A., et al: ‘RTDS implementation of an improved sliding mode based inverter controller for PV system’, ISA Trans., 2016, 62, pp. 5059.
    33. 33)
      • 33. Eskandar, H., Sadollah, A., Hamdi, M.: ‘Water cycle algorithm-A novel metaheuristic optimization method for solving constrained engineering optimization problems’, Comput. Struct., 2012, 110–111, pp. 151166.
    34. 34)
      • 34. Sadollah, A., Eskandar, H., Bahreininejad, A., et al: ‘Water cycle, mine blast and improved mine blast algorithms for discrete sizing optimization of truss structures’, Comput. Struct., 2015, 149, pp. 116.
    35. 35)
      • 35. Elhameed, M.A., El-Fergany, A.A.: ‘Water cycle algorithm-based load frequency controller for interconnected power systems comprising non-linearity’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39503961.
    36. 36)
      • 36. Elhameed, M.A., El-Fergany, A.A.: ‘Water cycle algorithm-based economic dispatcher for sequential and simultaneous objectives including practical constraints’, Appl. Soft Comput. J., 2017, 58, pp. 145154.
    37. 37)
      • 37. Release 2016 b: ‘MATLAB’ (The Math Works Press, 2016), https://www.mathworks.com.
    38. 38)
      • 38. PSCAD/EMTDC Manual, V. 4.5.3, Manitoba HVDC Research Center, 2014, Canada.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2018.5715
Loading

Related content

content/journals/10.1049/iet-gtd.2018.5715
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address