Reactive power management at the transmission–distribution interface with the support of distributed generators – a grid planning approach

Reactive power management at the transmission–distribution interface with the support of distributed generators – a grid planning approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study introduces a grid planning approach for reactive power management at the transmission–distribution interface with the support of distributed generators (DGs). The main research question is: can reactive power management with DGs provide controllable reactive power with a very high availability and can this reduce or avoid the demand for additional reactive power compensators in a distribution grid section (e.g. mechanically switched compensators)? Therefore, an availability analysis of reactive power support is performed for different generation types at the distribution level, like hydro, thermal, wind and photovoltaic power plants. For the investigated case study of a real German distribution grid, reactive power management with the support of DGs could relevantly reduce the demand for additional reactive power compensation devices. However, the effectivity of DGs for reactive power support strongly depends on the applied grid planning rules and requirements at the transmission–distribution interface.


    1. 1)
      • 1. Deutsche Energie-Agentur GmbH (dena).: ‘dena-Studie Systemdienstleistungen 2030 – Endbericht’ (dena, 2014), pp. 1314.
    2. 2)
      • 2. Kraiczy, M., Wang, H., Schmidt, S., et al: ‘Gesicherte und dargebotsabhängige Blindleistungsbereitstellung durch Erzeugungsanlagen im Verteilnetz’. Conf. Zukünftige Stromnetze für Erneuerbare Energien, Germany, Berlin, January 2017.
    3. 3)
      • 3. El-Samahy, I.: ‘Secure provision of reactive power ancillary services in competitive electricity markets’. PhD thesis, University of Waterloo, Canada, 2008.
    4. 4)
      • 4. Khandani, A., Foroud, A.A.: ‘Design of reactive power and reactive power reserve market’, IET Gener. Transm. Distrib., 2017, 11, (6), pp. 14431452.
    5. 5)
      • 5. Dong, F., Chowdhury, B.H., Crow, M.L., et al: ‘Improving voltage stability by reactive power reserve management’, IEEE Trans. Power Syst., 2005, 20, pp. 338345.
    6. 6)
      • 6. Mousavi, O.A., Bozorg, M., Cherkaoui, R.: ‘Preventive reactive power management for improving voltage stability margin’, Electr. Power Syst. Res., 2013, 96, pp. 3646.
    7. 7)
      • 7. Zalapa, R.R., Cory, B.J.: ‘Reactive reserve management’, IEE Proc., Gener. Transm. Distrib., 1995, 142, pp. 1723.
    8. 8)
      • 8. Lo, K.L., Alturki, Y.A.: ‘Towards reactive power markets. Part 1: reactive power allocation’, IEE Proc., Gener. Transm. Distrib., 2006, 153, pp. 5970.
    9. 9)
      • 9. Commission Regulation (EU) 2016/1388: ‘Establishing a network code on demand connection’, 2016.
    10. 10)
      • 10. Ali, S., Mutale, J.: ‘Reactive power management at transmission/distribution interface’. 50th Int. Univ. Power Engineering Conf. (UPEC), Stoke on Trent, UK, September 2015.
    11. 11)
      • 11. Vermeyen, P., Lauwers, P.: ‘Managing reactive power in MV distribution grids containing distributed generation’. 23rd Int. Conf. Electricity Distribution – CIRED Conf., Lyon, June 2015.
    12. 12)
      • 12. Bundesnetzagentur - Das EEG in Zahlen 2015’,, accessed 20 January 2018.
    13. 13)
      • 13. Schaefer, P., Vennegeerts, H., Krahl, S., et al: ‘Optionen fuer die Gestaltung des zukuenftigen Blindleistungsaustauschs an der Schnittstelle Verteil-/ Uebertragungsnetz’. 14th Symp. Energieinnovation, Graz, Austria, February 2016.
    14. 14)
      • 14. ENTSO-E.: ‘Reactive power management at T–D interface – ENTSO-E guidance document for national implementation for network codes on grid connection’ (ENTSO-E, Brussels, Belgium, 2016), pp. 89.
    15. 15)
      • 15. Wang, H., Stetz, T., Marten, F., et al: ‘Controlled reactive power provision at the interface of medium and high voltage level: first laboratory experiences for a Bayernwerk distribution grid using real-time-hardware-in-the-loop-simulation’. VDE ETG Congress, Germany, Bonn, November 2015.
    16. 16)
      • 16. Wang, H., Kraiczy, M., von Berg, S.W., et al: ‘Reactive power coordination strategies with distributed generators in distribution networks’. 1st Int. Conf. Large-Scale Grid Integration of Renewable Energy in India, New Delhi, September 2017.
    17. 17)
      • 17. Becker W., H., Malsch, M., Stieger, M., et al: ‘Reactive power management by distribution system operators concept and experience’, CIRED – Open Access Proc. J., 2017, 2017, pp. 25092512.
    18. 18)
      • 18. Morin, J., Colas, F., Guillad, X., et al: ‘Joint DSO-TSO reactive power management for an HV system considering MV systems support’, CIRED – Open Access Proc. J., 2017, 2017, pp. 12691273.
    19. 19)
      • 19. Kaempf, E., Braun, M., Stetz, T., et al: ‘Reliable controllable reactive power for the extra high voltage system by high voltage distributed energy resources’. CSE Journal, CSE 002, June 2015, pp. 1429.
    20. 20)
      • 20. Kreutziger, M., Becker, W., Schegner, P., et al: ‘Anwendungsfall-Optimierte Bereitstellung von Blindleistung aus Denzentralen Erzeugungsanlagen im 110-kV-Verteilnetz’. 14th Symp. Energieinnovation, Graz, Austria, February 2016.
    21. 21)
      • 21. Thurner, L., Scheidler, A., Schaefer, F., et al: ‘Pandapower – an open source python tool for convenient modeling, analysis and optimization of electric power systems’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 65106521, doi: 10.1109/TPWRS.2018.2829021.
    22. 22)
      • 22. VDE-AR-N 4120: ‘Technical requirements for the connection and operation of customer installations to the high voltage network (TAB high voltage)’, 2015.
    23. 23)
      • 23. Bundesverband der Energie und Wasserwirtschaft (BDEW): ‘Technical guideline for the connection and parallel operation of generator connected to the medium voltage network’, 2008.
    24. 24)
      • 24. Kaempf, E., Braun, M., Wang, H., et al: ‘Remuneration of controllable reactive power inside so far free of charge ranges: cost-benefit analysis’. 7th Solar Integration Workshop, Berlin, November 2017.
    25. 25)
      • 25. Braun, M.: ‘Provision of ancillary services by distributed generators’. PhD thesis, University of Kassel, Germany, 2008.

Related content

This is a required field
Please enter a valid email address